Struct swc_common::sync::Lrc1.0.0[][src]

pub struct Lrc<T> where
    T: ?Sized
{ /* fields omitted */ }
Expand description

A thread-safe reference-counting pointer. ‘Arc’ stands for ‘Atomically Reference Counted’.

The type Arc<T> provides shared ownership of a value of type T, allocated in the heap. Invoking clone on Arc produces a new Arc instance, which points to the same allocation on the heap as the source Arc, while increasing a reference count. When the last Arc pointer to a given allocation is destroyed, the value stored in that allocation (often referred to as “inner value”) is also dropped.

Shared references in Rust disallow mutation by default, and Arc is no exception: you cannot generally obtain a mutable reference to something inside an Arc. If you need to mutate through an Arc, use Mutex, RwLock, or one of the Atomic types.

Thread Safety

Unlike Rc<T>, Arc<T> uses atomic operations for its reference counting. This means that it is thread-safe. The disadvantage is that atomic operations are more expensive than ordinary memory accesses. If you are not sharing reference-counted allocations between threads, consider using Rc<T> for lower overhead. Rc<T> is a safe default, because the compiler will catch any attempt to send an Rc<T> between threads. However, a library might choose Arc<T> in order to give library consumers more flexibility.

Arc<T> will implement Send and Sync as long as the T implements Send and Sync. Why can’t you put a non-thread-safe type T in an Arc<T> to make it thread-safe? This may be a bit counter-intuitive at first: after all, isn’t the point of Arc<T> thread safety? The key is this: Arc<T> makes it thread safe to have multiple ownership of the same data, but it doesn’t add thread safety to its data. Consider Arc<RefCell<T>>. RefCell<T> isn’t Sync, and if Arc<T> was always Send, Arc<RefCell<T>> would be as well. But then we’d have a problem: RefCell<T> is not thread safe; it keeps track of the borrowing count using non-atomic operations.

In the end, this means that you may need to pair Arc<T> with some sort of std::sync type, usually Mutex<T>.

Breaking cycles with Weak

The downgrade method can be used to create a non-owning Weak pointer. A Weak pointer can be upgraded to an Arc, but this will return None if the value stored in the allocation has already been dropped. In other words, Weak pointers do not keep the value inside the allocation alive; however, they do keep the allocation (the backing store for the value) alive.

A cycle between Arc pointers will never be deallocated. For this reason, Weak is used to break cycles. For example, a tree could have strong Arc pointers from parent nodes to children, and Weak pointers from children back to their parents.

Cloning references

Creating a new reference from an existing reference-counted pointer is done using the Clone trait implemented for Arc<T> and Weak<T>.

use std::sync::Arc;
let foo = Arc::new(vec![1.0, 2.0, 3.0]);
// The two syntaxes below are equivalent.
let a = foo.clone();
let b = Arc::clone(&foo);
// a, b, and foo are all Arcs that point to the same memory location

Deref behavior

Arc<T> automatically dereferences to T (via the Deref trait), so you can call T’s methods on a value of type Arc<T>. To avoid name clashes with T’s methods, the methods of Arc<T> itself are associated functions, called using fully qualified syntax:

use std::sync::Arc;

let my_arc = Arc::new(());
let my_weak = Arc::downgrade(&my_arc);

Arc<T>’s implementations of traits like Clone may also be called using fully qualified syntax. Some people prefer to use fully qualified syntax, while others prefer using method-call syntax.

use std::sync::Arc;

let arc = Arc::new(());
// Method-call syntax
let arc2 = arc.clone();
// Fully qualified syntax
let arc3 = Arc::clone(&arc);

Weak<T> does not auto-dereference to T, because the inner value may have already been dropped.

Examples

Sharing some immutable data between threads:

use std::sync::Arc;
use std::thread;

let five = Arc::new(5);

for _ in 0..10 {
    let five = Arc::clone(&five);

    thread::spawn(move || {
        println!("{:?}", five);
    });
}

Sharing a mutable AtomicUsize:

use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::thread;

let val = Arc::new(AtomicUsize::new(5));

for _ in 0..10 {
    let val = Arc::clone(&val);

    thread::spawn(move || {
        let v = val.fetch_add(1, Ordering::SeqCst);
        println!("{:?}", v);
    });
}

See the rc documentation for more examples of reference counting in general.

Implementations

Constructs a new Arc<T>.

Examples
use std::sync::Arc;

let five = Arc::new(5);
🔬 This is a nightly-only experimental API. (arc_new_cyclic)

Constructs a new Arc<T> using a weak reference to itself. Attempting to upgrade the weak reference before this function returns will result in a None value. However, the weak reference may be cloned freely and stored for use at a later time.

Examples
#![feature(arc_new_cyclic)]
#![allow(dead_code)]

use std::sync::{Arc, Weak};

struct Foo {
    me: Weak<Foo>,
}

let foo = Arc::new_cyclic(|me| Foo {
    me: me.clone(),
});
🔬 This is a nightly-only experimental API. (new_uninit)

Constructs a new Arc with uninitialized contents.

Examples
#![feature(new_uninit)]
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut five = Arc::<u32>::new_uninit();

let five = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5)
🔬 This is a nightly-only experimental API. (new_uninit)

Constructs a new Arc with uninitialized contents, with the memory being filled with 0 bytes.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

Examples
#![feature(new_uninit)]

use std::sync::Arc;

let zero = Arc::<u32>::new_zeroed();
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0)

Constructs a new Pin<Arc<T>>. If T does not implement Unpin, then data will be pinned in memory and unable to be moved.

🔬 This is a nightly-only experimental API. (allocator_api)

Constructs a new Pin<Arc<T>>, return an error if allocation fails.

🔬 This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc<T>, returning an error if allocation fails.

Examples
#![feature(allocator_api)]
use std::sync::Arc;

let five = Arc::try_new(5)?;
🔬 This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc with uninitialized contents, returning an error if allocation fails.

Examples
#![feature(new_uninit, allocator_api)]
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut five = Arc::<u32>::try_new_uninit()?;

let five = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5);
🔬 This is a nightly-only experimental API. (allocator_api)

Constructs a new Arc with uninitialized contents, with the memory being filled with 0 bytes, returning an error if allocation fails.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

Examples
#![feature(new_uninit, allocator_api)]

use std::sync::Arc;

let zero = Arc::<u32>::try_new_zeroed()?;
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0);

Returns the inner value, if the Arc has exactly one strong reference.

Otherwise, an Err is returned with the same Arc that was passed in.

This will succeed even if there are outstanding weak references.

Examples
use std::sync::Arc;

let x = Arc::new(3);
assert_eq!(Arc::try_unwrap(x), Ok(3));

let x = Arc::new(4);
let _y = Arc::clone(&x);
assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
🔬 This is a nightly-only experimental API. (new_uninit)

Constructs a new atomically reference-counted slice with uninitialized contents.

Examples
#![feature(new_uninit)]
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut values = Arc::<[u32]>::new_uninit_slice(3);

let values = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
    Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
    Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);

    values.assume_init()
};

assert_eq!(*values, [1, 2, 3])
🔬 This is a nightly-only experimental API. (new_uninit)

Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being filled with 0 bytes.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

Examples
#![feature(new_uninit)]

use std::sync::Arc;

let values = Arc::<[u32]>::new_zeroed_slice(3);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [0, 0, 0])
🔬 This is a nightly-only experimental API. (new_uninit)

Converts to Arc<T>.

Safety

As with MaybeUninit::assume_init, it is up to the caller to guarantee that the inner value really is in an initialized state. Calling this when the content is not yet fully initialized causes immediate undefined behavior.

Examples
#![feature(new_uninit)]
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut five = Arc::<u32>::new_uninit();

let five = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5)
🔬 This is a nightly-only experimental API. (new_uninit)

Converts to Arc<[T]>.

Safety

As with MaybeUninit::assume_init, it is up to the caller to guarantee that the inner value really is in an initialized state. Calling this when the content is not yet fully initialized causes immediate undefined behavior.

Examples
#![feature(new_uninit)]
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut values = Arc::<[u32]>::new_uninit_slice(3);

let values = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
    Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
    Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);

    values.assume_init()
};

assert_eq!(*values, [1, 2, 3])

Consumes the Arc, returning the wrapped pointer.

To avoid a memory leak the pointer must be converted back to an Arc using Arc::from_raw.

Examples
use std::sync::Arc;

let x = Arc::new("hello".to_owned());
let x_ptr = Arc::into_raw(x);
assert_eq!(unsafe { &*x_ptr }, "hello");

Provides a raw pointer to the data.

The counts are not affected in any way and the Arc is not consumed. The pointer is valid for as long as there are strong counts in the Arc.

Examples
use std::sync::Arc;

let x = Arc::new("hello".to_owned());
let y = Arc::clone(&x);
let x_ptr = Arc::as_ptr(&x);
assert_eq!(x_ptr, Arc::as_ptr(&y));
assert_eq!(unsafe { &*x_ptr }, "hello");

Constructs an Arc<T> from a raw pointer.

The raw pointer must have been previously returned by a call to Arc<U>::into_raw where U must have the same size and alignment as T. This is trivially true if U is T. Note that if U is not T but has the same size and alignment, this is basically like transmuting references of different types. See mem::transmute for more information on what restrictions apply in this case.

The user of from_raw has to make sure a specific value of T is only dropped once.

This function is unsafe because improper use may lead to memory unsafety, even if the returned Arc<T> is never accessed.

Examples
use std::sync::Arc;

let x = Arc::new("hello".to_owned());
let x_ptr = Arc::into_raw(x);

unsafe {
    // Convert back to an `Arc` to prevent leak.
    let x = Arc::from_raw(x_ptr);
    assert_eq!(&*x, "hello");

    // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
}

// The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!

Creates a new Weak pointer to this allocation.

Examples
use std::sync::Arc;

let five = Arc::new(5);

let weak_five = Arc::downgrade(&five);

Gets the number of Weak pointers to this allocation.

Safety

This method by itself is safe, but using it correctly requires extra care. Another thread can change the weak count at any time, including potentially between calling this method and acting on the result.

Examples
use std::sync::Arc;

let five = Arc::new(5);
let _weak_five = Arc::downgrade(&five);

// This assertion is deterministic because we haven't shared
// the `Arc` or `Weak` between threads.
assert_eq!(1, Arc::weak_count(&five));

Gets the number of strong (Arc) pointers to this allocation.

Safety

This method by itself is safe, but using it correctly requires extra care. Another thread can change the strong count at any time, including potentially between calling this method and acting on the result.

Examples
use std::sync::Arc;

let five = Arc::new(5);
let _also_five = Arc::clone(&five);

// This assertion is deterministic because we haven't shared
// the `Arc` between threads.
assert_eq!(2, Arc::strong_count(&five));

Increments the strong reference count on the Arc<T> associated with the provided pointer by one.

Safety

The pointer must have been obtained through Arc::into_raw, and the associated Arc instance must be valid (i.e. the strong count must be at least 1) for the duration of this method.

Examples
use std::sync::Arc;

let five = Arc::new(5);

unsafe {
    let ptr = Arc::into_raw(five);
    Arc::increment_strong_count(ptr);

    // This assertion is deterministic because we haven't shared
    // the `Arc` between threads.
    let five = Arc::from_raw(ptr);
    assert_eq!(2, Arc::strong_count(&five));
}

Decrements the strong reference count on the Arc<T> associated with the provided pointer by one.

Safety

The pointer must have been obtained through Arc::into_raw, and the associated Arc instance must be valid (i.e. the strong count must be at least 1) when invoking this method. This method can be used to release the final Arc and backing storage, but should not be called after the final Arc has been released.

Examples
use std::sync::Arc;

let five = Arc::new(5);

unsafe {
    let ptr = Arc::into_raw(five);
    Arc::increment_strong_count(ptr);

    // Those assertions are deterministic because we haven't shared
    // the `Arc` between threads.
    let five = Arc::from_raw(ptr);
    assert_eq!(2, Arc::strong_count(&five));
    Arc::decrement_strong_count(ptr);
    assert_eq!(1, Arc::strong_count(&five));
}

Returns true if the two Arcs point to the same allocation (in a vein similar to ptr::eq).

Examples
use std::sync::Arc;

let five = Arc::new(5);
let same_five = Arc::clone(&five);
let other_five = Arc::new(5);

assert!(Arc::ptr_eq(&five, &same_five));
assert!(!Arc::ptr_eq(&five, &other_five));

Makes a mutable reference into the given Arc.

If there are other Arc pointers to the same allocation, then make_mut will clone the inner value to a new allocation to ensure unique ownership. This is also referred to as clone-on-write.

However, if there are no other Arc pointers to this allocation, but some Weak pointers, then the Weak pointers will be disassociated and the inner value will not be cloned.

See also get_mut, which will fail rather than cloning the inner value or diassociating Weak pointers.

Examples
use std::sync::Arc;

let mut data = Arc::new(5);

*Arc::make_mut(&mut data) += 1;         // Won't clone anything
let mut other_data = Arc::clone(&data); // Won't clone inner data
*Arc::make_mut(&mut data) += 1;         // Clones inner data
*Arc::make_mut(&mut data) += 1;         // Won't clone anything
*Arc::make_mut(&mut other_data) *= 2;   // Won't clone anything

// Now `data` and `other_data` point to different allocations.
assert_eq!(*data, 8);
assert_eq!(*other_data, 12);

Weak pointers will be disassociated:

use std::sync::Arc;

let mut data = Arc::new(75);
let weak = Arc::downgrade(&data);

assert!(75 == *data);
assert!(75 == *weak.upgrade().unwrap());

*Arc::make_mut(&mut data) += 1;

assert!(76 == *data);
assert!(weak.upgrade().is_none());

Returns a mutable reference into the given Arc, if there are no other Arc or Weak pointers to the same allocation.

Returns None otherwise, because it is not safe to mutate a shared value.

See also make_mut, which will clone the inner value when there are other Arc pointers.

Examples
use std::sync::Arc;

let mut x = Arc::new(3);
*Arc::get_mut(&mut x).unwrap() = 4;
assert_eq!(*x, 4);

let _y = Arc::clone(&x);
assert!(Arc::get_mut(&mut x).is_none());
🔬 This is a nightly-only experimental API. (get_mut_unchecked)

Returns a mutable reference into the given Arc, without any check.

See also get_mut, which is safe and does appropriate checks.

Safety

Any other Arc or Weak pointers to the same allocation must not be dereferenced for the duration of the returned borrow. This is trivially the case if no such pointers exist, for example immediately after Arc::new.

Examples
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut x = Arc::new(String::new());
unsafe {
    Arc::get_mut_unchecked(&mut x).push_str("foo")
}
assert_eq!(*x, "foo");

Attempt to downcast the Arc<dyn Any + Send + Sync> to a concrete type.

Examples
use std::any::Any;
use std::sync::Arc;

fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
    if let Ok(string) = value.downcast::<String>() {
        println!("String ({}): {}", string.len(), string);
    }
}

let my_string = "Hello World".to_string();
print_if_string(Arc::new(my_string));
print_if_string(Arc::new(0i8));

Trait Implementations

Generate an arbitrary value of Self from the given unstructured data. Read more

Get a size hint for how many bytes out of an Unstructured this type needs to construct itself. Read more

Generate an arbitrary value of Self from the entirety of the given unstructured data. Read more

Performs the conversion.

Immutably borrows from an owned value. Read more

Makes a clone of the Arc pointer.

This creates another pointer to the same allocation, increasing the strong reference count.

Examples
use std::sync::Arc;

let five = Arc::new(5);

let _ = Arc::clone(&five);

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Creates a new Arc<T>, with the Default value for T.

Examples
use std::sync::Arc;

let x: Arc<i32> = Default::default();
assert_eq!(*x, 0);

The resulting type after dereferencing.

Dereferences the value.

Formats the value using the given formatter. Read more

Drops the Arc.

This will decrement the strong reference count. If the strong reference count reaches zero then the only other references (if any) are Weak, so we drop the inner value.

Examples
use std::sync::Arc;

struct Foo;

impl Drop for Foo {
    fn drop(&mut self) {
        println!("dropped!");
    }
}

let foo  = Arc::new(Foo);
let foo2 = Arc::clone(&foo);

drop(foo);    // Doesn't print anything
drop(foo2);   // Prints "dropped!"
👎 Deprecated since 1.42.0:

use the Display impl or to_string()

👎 Deprecated since 1.33.0:

replaced by Error::source, which can support downcasting

The lower-level source of this error, if any. Read more

🔬 This is a nightly-only experimental API. (backtrace)

Returns a stack backtrace, if available, of where this error occurred. Read more

Allocate a reference-counted slice and fill it by cloning v’s items.

Example
let original: &[i32] = &[1, 2, 3];
let shared: Arc<[i32]> = Arc::from(original);
assert_eq!(&[1, 2, 3], &shared[..]);

Performs the conversion.

Performs the conversion.

Converts a Path into an Arc by copying the Path data into a new Arc buffer.

Allocate a reference-counted str and copy v into it.

Example
let shared: Arc<str> = Arc::from("eggplant");
assert_eq!("eggplant", &shared[..]);

Performs the conversion.

Use a Wake-able type as a RawWaker.

No heap allocations or atomic operations are used for this conversion.

Use a Wake-able type as a Waker.

No heap allocations or atomic operations are used for this conversion.

Move a boxed object to a new, reference-counted allocation.

Example
let unique: Box<str> = Box::from("eggplant");
let shared: Arc<str> = Arc::from(unique);
assert_eq!("eggplant", &shared[..]);

Converts a CString into an Arc<CStr> without copying or allocating.

Create an atomically reference-counted pointer from a clone-on-write pointer by copying its content.

Example
let cow: Cow<str> = Cow::Borrowed("eggplant");
let shared: Arc<str> = Arc::from(cow);
assert_eq!("eggplant", &shared[..]);

Converts an OsString into an Arc<OsStr> without copying or allocating.

Converts a PathBuf into an Arc by moving the PathBuf data into a new Arc buffer.

Performs the conversion.

Allocate a reference-counted str and copy v into it.

Example
let unique: String = "eggplant".to_owned();
let shared: Arc<str> = Arc::from(unique);
assert_eq!("eggplant", &shared[..]);

Converts a T into an Arc<T>

The conversion moves the value into a newly allocated Arc. It is equivalent to calling Arc::new(t).

Example
let x = 5;
let arc = Arc::new(5);

assert_eq!(Arc::from(x), arc);

Allocate a reference-counted slice and move v’s items into it.

Example
let unique: Vec<i32> = vec![1, 2, 3];
let shared: Arc<[i32]> = Arc::from(unique);
assert_eq!(&[1, 2, 3], &shared[..]);

Takes each element in the Iterator and collects it into an Arc<[T]>.

Performance characteristics
The general case

In the general case, collecting into Arc<[T]> is done by first collecting into a Vec<T>. That is, when writing the following:

let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();

this behaves as if we wrote:

let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
    .collect::<Vec<_>>() // The first set of allocations happens here.
    .into(); // A second allocation for `Arc<[T]>` happens here.

This will allocate as many times as needed for constructing the Vec<T> and then it will allocate once for turning the Vec<T> into the Arc<[T]>.

Iterators of known length

When your Iterator implements TrustedLen and is of an exact size, a single allocation will be made for the Arc<[T]>. For example:

let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

Owner with the dereference type substituted to Erased.

Perform the type erasure.

The #[repr(C)] equivalent.

Performs the conversion

Comparison for two Arcs.

The two are compared by calling cmp() on their inner values.

Examples
use std::sync::Arc;
use std::cmp::Ordering;

let five = Arc::new(5);

assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

Restrict a value to a certain interval. Read more

Equality for two Arcs.

Two Arcs are equal if their inner values are equal, even if they are stored in different allocation.

If T also implements Eq (implying reflexivity of equality), two Arcs that point to the same allocation are always equal.

Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five == Arc::new(5));

Inequality for two Arcs.

Two Arcs are unequal if their inner values are unequal.

If T also implements Eq (implying reflexivity of equality), two Arcs that point to the same value are never unequal.

Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five != Arc::new(6));

Partial comparison for two Arcs.

The two are compared by calling partial_cmp() on their inner values.

Examples
use std::sync::Arc;
use std::cmp::Ordering;

let five = Arc::new(5);

assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));

Less-than comparison for two Arcs.

The two are compared by calling < on their inner values.

Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five < Arc::new(6));

‘Less than or equal to’ comparison for two Arcs.

The two are compared by calling <= on their inner values.

Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five <= Arc::new(5));

Greater-than comparison for two Arcs.

The two are compared by calling > on their inner values.

Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five > Arc::new(4));

‘Greater than or equal to’ comparison for two Arcs.

The two are compared by calling >= on their inner values.

Examples
use std::sync::Arc;

let five = Arc::new(5);

assert!(five >= Arc::new(5));

Formats the value using the given formatter.

Returns Read more

Returns identifier starting at bpos.

You can override this to control sourceContents.

Get span of self.

Registers a new callsite with this subscriber, returning whether or not the subscriber is interested in being notified about the callsite. Read more

Returns true if a span or event with the specified metadata would be recorded. Read more

Returns the highest verbosity level that this Subscriber will enable, or None, if the subscriber does not implement level-based filtering or chooses not to implement this method. Read more

Visit the construction of a new span, returning a new span ID for the span being constructed. Read more

Record a set of values on a span. Read more

Adds an indication that span follows from the span with the id follows. Read more

Records that an Event has occurred. Read more

Records that a span has been entered. Read more

Records that a span has been exited. Read more

Notifies the subscriber that a span ID has been cloned. Read more

Notifies the subscriber that a span ID has been dropped, and returns true if there are now 0 IDs that refer to that span. Read more

👎 Deprecated since 0.1.2:

use Subscriber::try_close instead

This method is deprecated. Read more

Returns a type representing this subscriber’s view of the current span. Read more

If self is the same type as the provided TypeId, returns an untyped *const pointer to that type. Otherwise, returns None. Read more

The type returned in the event of a conversion error.

Performs the conversion.

Note: This method should return true for non-type values.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

The owned type, stored in RCow::Owned

The borrowed type, stored in RCow::Borrowed

👎 Deprecated since 0.13.5:

helper methods are merged into Comments itself

👎 Deprecated since 0.13.5:

helper methods are merged into Comments itself

Performs the conversion.

Performs the conversion.

This is always WithMetadata_<Self, Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Performs the conversion.

Gets a reference to a field, determined by offset. Read more

Gets a muatble reference to a field, determined by offset. Read more

Gets a const pointer to a field, the field is determined by offset. Read more

Gets a mutable pointer to a field, determined by offset. Read more

Replaces a field (determined by offset) with value, returning the previous value of the field. Read more

Swaps a field (determined by offset) with the same field in right. Read more

Gets a copy of a field (determined by offset). The field is determined by offset. Read more

Replaces a field (determined by offset) with value, returning the previous value of the field. Read more

Swaps a field (determined by offset) with the same field in right. Read more

Gets a copy of a field (determined by offset). The field is determined by offset. Read more

Compares the address of self with the address of other. Read more

Emulates the pipeline operator, allowing method syntax in more places. Read more

The same as piped except that the function takes &Self Useful for functions that take &Self instead of Self. Read more

The same as piped, except that the function takes &mut Self. Useful for functions that take &mut Self instead of Self. Read more

Mutates self using a closure taking self by mutable reference, passing it along the method chain. Read more

Observes the value of self, passing it along unmodified. Useful in long method chains. Read more

Performs a conversion with Into. using the turbofish .into_::<_>() syntax. Read more

Performs a reference to reference conversion with AsRef, using the turbofish .as_ref_::<_>() syntax. Read more

Performs a mutable reference to mutable reference conversion with AsMut, using the turbofish .as_mut_::<_>() syntax. Read more

Drops self using method notation. Alternative to std::mem::drop. Read more

Returns the previous character boundary, stopping at 0. Read more

Returns the next character boundary. Read more

Returns the closest characted boundary left of index(including index). Read more

Returns the closest characted boundary right of index(including index). Read more

Returns an iterator over substrings whose characters were mapped to the same key by mapper. Read more

A variation of split_while that iterates from the right(the order of substrings is reversed). Read more

The byte index of the nth character Read more

The byte index of the nth character Read more

Returns the nth character in the str. Read more

Returns a string containing the first n chars. Read more

Returns a string containing the last n chars Read more

Returns the string from the nth character Read more

Returns the length of the string in utf16 Read more

Returns the character at the at_byte index inside of the string, returning None if the index is outside the string. Read more

Returns an iterator over (index,char) pairs up to (but not including) the char at the to byte. Read more

Returns an iterator over (index, char) pairs, starting from the from byte. Read more

Pads the string on the left with how_much additional spaces. Read more

Returns a value that pads the string on the left with how_much additional spaces in its Display impl. Read more

The indentation of the first line. Read more

The minimum indentation of the string, ignoring lines that only contain whitespace. Read more

The maximum indentation of the string, ignoring lines that only contain whitespace. Read more

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into)

Uses borrowed data to replace owned data, usually by cloning. Read more

Converts the given value to a String. Read more

Transmutes the element type of this pointer.. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

This is always Self.

Converts a value back to the original type.

Converts a reference back to the original type.

Converts a mutable reference back to the original type.

Converts a box back to the original type.

Converts an Arc back to the original type. Read more

Converts an Rc back to the original type. Read more

Converts a value back to the original type.

Converts a reference back to the original type.

Converts a mutable reference back to the original type.

Converts a box back to the original type.

Converts an Arc back to the original type.

Converts an Rc back to the original type.

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more