1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
/*
 *
 * SPDX-FileCopyrightText: 2023 Tommaso Fontana
 *
 * SPDX-License-Identifier: Apache-2.0 OR LGPL-2.1-or-later
 */

use crate::{bits::CountBitVec, traits::*};
use anyhow::Result;
use common_traits::SelectInWord;
use epserde::*;
use mem_dbg::*;

/**

A selection structure based on a two-level index.

This is a fixed-density version of the structure described by
by Sebastiano Vigna in “<a href="https://link.springer.com/chapter/10.1007/978-3-540-68552-4_12">Broadword
Implementation of Rank/Select Queries</a>”, _Proc. of the 7th International Workshop
on Experimental Algorithms, WEA 2008_, volume 5038 of Lecture Notes in Computer Science, pages
154–168. Springer, 2008.

It records the position of one every 2<sup>`LOG2_ONES_PER_INVENTORY`</sup> ones in a first-level
inventory of `u64`'s; then, for each first-level inventory a subinventory of 2<sup>`LOG2_U64_PER_SUBINVENTORY`</sup>
`u64`'s is allocated. The subinventory will store either 4·2<sup>`LOG2_U64_PER_SUBINVENTORY`</sup> `u16`'s recording
the position of one every 2<sup>`LOG2_ONES_PER_INVENTORY`</sup>/(4·2<sup>`LOG2_U64_PER_SUBINVENTORY`</sup>) ones,
if the distance between the first and last one in the inventory is less than 2<sup>16</sup>, or
2<sup>`LOG2_U64_PER_SUBINVENTORY`</sup> `u64`'s recording
the position of one every 2<sup>`LOG2_ONES_PER_INVENTORY`</sup>/2<sup>`LOG2_U64_PER_SUBINVENTORY`</sup> otherwise.

Thus, the objective of sizing the first-level inventory is to obtain the second-level inventory with a
span of less than 2<sup>16</sup> elements as often as possible. The default parameters are a good choice for a vector
with approximately the same number of zeroes and ones.

The size of the structure is [`BitCount::count()`] *
(1 + 2<sup>`LOG2_U64_PER_SUBINVENTORY`</sup>) * 64 / 2<sup>`LOG2_ONES_PER_INVENTORY`</sup> bits.

See [`SelectZeroFixed2`](crate::rank_sel::SelectZeroFixed2) for the same structure for zeros.

*/
#[derive(Epserde, Debug, Clone, MemDbg, MemSize)]
pub struct SelectFixed2<
    B: SelectHinted = CountBitVec,
    I: AsRef<[u64]> = Vec<u64>,
    const LOG2_ONES_PER_INVENTORY: usize = 10,
    const LOG2_U64_PER_SUBINVENTORY: usize = 2,
> {
    bits: B,
    inventory: I,
}

/// constants used throughout the code
impl<
        B: SelectHinted,
        I: AsRef<[u64]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > SelectFixed2<B, I, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>
{
    const ONES_PER_INVENTORY: usize = 1 << LOG2_ONES_PER_INVENTORY;
    const U64_PER_SUBINVENTORY: usize = 1 << LOG2_U64_PER_SUBINVENTORY;
    const U64_PER_INVENTORY: usize = 1 + Self::U64_PER_SUBINVENTORY;

    const LOG2_ONES_PER_SUB64: usize = LOG2_ONES_PER_INVENTORY - LOG2_U64_PER_SUBINVENTORY;
    const ONES_PER_SUB64: usize = 1 << Self::LOG2_ONES_PER_SUB64;

    const LOG2_ONES_PER_SUB16: usize = Self::LOG2_ONES_PER_SUB64 - 2;
    const ONES_PER_SUB16: usize = 1 << Self::LOG2_ONES_PER_SUB16;

    /// We use the sign bit to store the type of the subinventory (u16 vs. u64).
    const INVENTORY_MASK: u64 = (1 << 63) - 1;
}

impl<
        B: SelectHinted + BitLength + BitCount + AsRef<[usize]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > SelectFixed2<B, Vec<u64>, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>
{
    pub fn new(bitvec: B) -> Self {
        // number of inventories we will create
        let inventory_size = bitvec.count().div_ceil(Self::ONES_PER_INVENTORY);
        let inventory_len = inventory_size * Self::U64_PER_INVENTORY + 1;
        // inventory_size, an u64 for the first layer index, and Self::U64_PER_SUBINVENTORY for the sub layer
        let mut inventory = Vec::with_capacity(inventory_len);
        // scan the bitvec and fill the first layer of the inventory
        let mut number_of_ones = 0;
        let mut next_quantum = 0;
        for (i, word) in bitvec.as_ref().iter().copied().enumerate() {
            let ones_in_word = word.count_ones() as u64;
            // skip the word if we can
            while number_of_ones + ones_in_word > next_quantum {
                let in_word_index = word.select_in_word((next_quantum - number_of_ones) as usize);
                let index = (i * u64::BITS as usize) + in_word_index;

                // write the position of the one in the inventory
                inventory.push(index as u64);
                // make space for the subinventory
                inventory.resize(inventory.len() + Self::U64_PER_SUBINVENTORY, 0);

                next_quantum += Self::ONES_PER_INVENTORY as u64;
            }
            number_of_ones += ones_in_word;
        }
        // in the last inventory write the number of bits
        inventory.push(BitLength::len(&bitvec) as u64);
        assert_eq!(inventory_len, inventory.len());
        // build the index
        let iter = 0..inventory_size;

        // fill the second layer of the index
        iter.for_each(|inventory_idx| {
            // get the start and end u64 index of the current inventory
            let start_idx = inventory_idx * Self::U64_PER_INVENTORY;
            let end_idx = start_idx + Self::U64_PER_INVENTORY;
            // read the first level index to get the start and end bit index
            let start_bit_idx = inventory[start_idx];
            let end_bit_idx = inventory[end_idx];
            // compute the span of the inventory
            let span = end_bit_idx - start_bit_idx;
            // compute were we should the word boundaries of where we should
            // scan
            let mut word_idx = start_bit_idx / u64::BITS as u64;

            // cleanup the lower bits
            let bit_idx = start_bit_idx % u64::BITS as u64;
            let mut word = (bitvec.as_ref()[word_idx as usize] >> bit_idx) << bit_idx;
            // compute the global number of ones
            let mut number_of_ones = inventory_idx * Self::ONES_PER_INVENTORY;
            // and what's the next bit rank which index should log in the sub
            // inventory (the first subinventory element is always 0)
            let mut next_quantum = number_of_ones;
            let quantum;

            if span <= u16::MAX as u64 {
                quantum = Self::ONES_PER_SUB16;
            } else {
                quantum = Self::ONES_PER_SUB64;
                inventory[start_idx] |= 1_u64 << 63;
            }

            let end_word_idx = end_bit_idx.div_ceil(u64::BITS as u64);

            // the first subinventory element is always 0
            let mut subinventory_idx = 1;
            next_quantum += quantum;

            'outer: loop {
                let ones_in_word = word.count_ones() as usize;

                // if the quantum is in this word, write it in the subinventory
                // this can happen multiple times if the quantum is small
                while number_of_ones + ones_in_word > next_quantum {
                    debug_assert!(next_quantum <= end_bit_idx as _);
                    // find the quantum bit in the word
                    let in_word_index = word.select_in_word(next_quantum - number_of_ones);
                    // compute the global index of the quantum bit in the bitvec
                    let bit_index = (word_idx * u64::BITS as u64) + in_word_index as u64;
                    // compute the offset of the quantum bit
                    // from the start of the subinventory
                    let sub_offset = bit_index - start_bit_idx;

                    if span <= u16::MAX as u64 {
                        let subinventory: &mut [u16] =
                            unsafe { inventory[start_idx + 1..end_idx].align_to_mut().1 };

                        subinventory[subinventory_idx] = sub_offset as u16;
                    } else {
                        inventory[start_idx + 1 + subinventory_idx] = sub_offset;
                    }

                    // update the subinventory index and the next quantum
                    subinventory_idx += 1;
                    if subinventory_idx == (1 << LOG2_ONES_PER_INVENTORY) / quantum {
                        break 'outer;
                    }

                    next_quantum += quantum;
                }

                // we are done with the word, so update the number of ones
                number_of_ones += ones_in_word;
                // move to the next word and boundcheck
                word_idx += 1;
                if word_idx == end_word_idx {
                    break;
                }

                // read the next word
                word = bitvec.as_ref()[word_idx as usize];
            }
        });

        Self {
            bits: bitvec,
            inventory,
        }
    }
}

/// Provide the hint to the underlying structure
impl<
        B: SelectHinted + BitCount,
        I: AsRef<[u64]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > Select for SelectFixed2<B, I, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>
{
    #[inline(always)]
    unsafe fn select_unchecked(&self, rank: usize) -> usize {
        // find the index of the first level inventory
        let inventory_index = rank / Self::ONES_PER_INVENTORY;
        // find the index of the second level inventory
        let subrank = rank % Self::ONES_PER_INVENTORY;
        // find the position of the first index value in the interleaved inventory
        let start_idx = inventory_index * (1 + Self::U64_PER_SUBINVENTORY);
        // read the potentially unaliged i64 (i.e. the first index value)
        let inventory_rank = *self.inventory.as_ref().get_unchecked(start_idx);
        // get a reference to the u64s in this subinventory
        let u64s = self
            .inventory
            .as_ref()
            .get_unchecked(start_idx + 1..start_idx + 1 + Self::U64_PER_SUBINVENTORY);

        // if the inventory_rank is positive, the subranks are u16s otherwise they are u64s
        let (pos, residual) = if inventory_rank as isize >= 0 {
            let (_pre, u16s, _post) = u64s.align_to::<u16>();
            (
                inventory_rank + *u16s.get_unchecked(subrank / Self::ONES_PER_SUB16) as u64,
                subrank % Self::ONES_PER_SUB16,
            )
        } else {
            (
                (inventory_rank & Self::INVENTORY_MASK)
                    + u64s.get_unchecked(subrank / Self::ONES_PER_SUB64),
                subrank % Self::ONES_PER_SUB64,
            )
        };

        // linear scan to finish the search
        self.bits
            .select_hinted_unchecked(rank, pos as usize, rank - residual)
    }
}

/// Forget the index.
impl<
        B: SelectHinted + BitCount,
        I: AsRef<[u64]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > ConvertTo<B> for SelectFixed2<B, I, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>
{
    #[inline(always)]
    fn convert_to(self) -> Result<B> {
        Ok(self.bits)
    }
}

/// Create and add a selection structure.

impl<
        B: SelectHinted + BitLength + BitCount + AsRef<[usize]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > ConvertTo<SelectFixed2<B, Vec<u64>, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>>
    for B
{
    #[inline(always)]
    fn convert_to(
        self,
    ) -> Result<SelectFixed2<B, Vec<u64>, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>> {
        Ok(SelectFixed2::new(self))
    }
}

/// Forward [`BitLength`] to the underlying implementation.
impl<
        B: SelectHinted + BitLength,
        I: AsRef<[u64]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > BitLength for SelectFixed2<B, I, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>
{
    #[inline(always)]
    fn len(&self) -> usize {
        self.bits.len()
    }
}

/// Forward [`BitCount`] to the underlying implementation.
impl<
        B: SelectHinted + BitCount,
        I: AsRef<[u64]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > BitCount for SelectFixed2<B, I, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>
{
    #[inline(always)]
    fn count(&self) -> usize {
        self.bits.count()
    }
}

/// Forward [`SelectZero`] to the underlying implementation.
impl<
        B: SelectHinted + SelectZero,
        I: AsRef<[u64]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > SelectZero for SelectFixed2<B, I, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>
{
    #[inline(always)]
    fn select_zero(&self, rank: usize) -> Option<usize> {
        self.bits.select_zero(rank)
    }
    #[inline(always)]
    unsafe fn select_zero_unchecked(&self, rank: usize) -> usize {
        self.bits.select_zero_unchecked(rank)
    }
}

/// Forward [`SelectHinted`] to the underlying implementation.
impl<
        B: SelectHinted + SelectZeroHinted,
        I: AsRef<[u64]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > SelectZeroHinted for SelectFixed2<B, I, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>
{
    #[inline(always)]
    unsafe fn select_zero_hinted_unchecked(
        &self,
        rank: usize,
        pos: usize,
        rank_at_pos: usize,
    ) -> usize {
        self.bits
            .select_zero_hinted_unchecked(rank, pos, rank_at_pos)
    }

    #[inline(always)]
    fn select_zero_hinted(&self, rank: usize, pos: usize, rank_at_pos: usize) -> Option<usize> {
        self.bits.select_zero_hinted(rank, pos, rank_at_pos)
    }
}

/// Forward [`Rank`] to the underlying implementation.
impl<
        B: SelectHinted + Rank,
        I: AsRef<[u64]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > Rank for SelectFixed2<B, I, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>
{
    fn rank(&self, pos: usize) -> usize {
        self.bits.rank(pos)
    }

    unsafe fn rank_unchecked(&self, pos: usize) -> usize {
        self.bits.rank_unchecked(pos)
    }
}

/// Forward [`RankZero`] to the underlying implementation.
impl<
        B: SelectHinted + RankZero,
        I: AsRef<[u64]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > RankZero for SelectFixed2<B, I, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>
{
    fn rank_zero(&self, pos: usize) -> usize {
        self.bits.rank_zero(pos)
    }

    unsafe fn rank_zero_unchecked(&self, pos: usize) -> usize {
        self.bits.rank_zero_unchecked(pos)
    }
}

/// Forward `AsRef<[usize]>` to the underlying implementation.
impl<
        B: SelectHinted + AsRef<[usize]>,
        I: AsRef<[u64]>,
        const LOG2_ONES_PER_INVENTORY: usize,
        const LOG2_U64_PER_SUBINVENTORY: usize,
    > AsRef<[usize]> for SelectFixed2<B, I, LOG2_ONES_PER_INVENTORY, LOG2_U64_PER_SUBINVENTORY>
{
    fn as_ref(&self) -> &[usize] {
        self.bits.as_ref()
    }
}