1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
//! This module contains logic for generating random Sudoku.
//!
//! Generation of Sudoku puzzles is done by first generating a full grid with a
//! [Generator] and then removing some clues using a [Reducer].

use crate::Sudoku;
use crate::constraint::Constraint;
use crate::error::{SudokuError, SudokuResult};
use crate::solver::{BacktrackingSolver, Solution, Solver};

use rand::Rng;
use rand::rngs::ThreadRng;

/// A generator randomly generates a full [Sudoku], that is, a Sudoku with no
/// missing digits. It uses a random number generator to decide the content.
/// For most cases, sensible defaults are provided by [Generator::new_default].
pub struct Generator<R: Rng> {
    rng: R
}

impl Generator<ThreadRng> {

    /// Creates a new generator that uses a [ThreadRng] to generate the random
    /// digits.
    pub fn new_default() -> Generator<ThreadRng> {
        Generator::new(rand::thread_rng())
    }
}

fn shuffle<T>(rng: &mut impl Rng, values: impl Iterator<Item = T>) -> Vec<T> {
    let mut vec: Vec<T> = values.collect();
    let len = vec.len();

    for i in 0..(len - 1) {
        let j = rng.gen_range(i..len);
        vec.swap(i, j);
    }

    vec
}

impl<R: Rng> Generator<R> {

    /// Creates a new generator that uses the given random number generator to
    /// generate random digits.
    pub fn new(rng: R) -> Generator<R> {
        Generator {
            rng
        }
    }

    fn generate_rec<C: Constraint + Clone>(&mut self, sudoku: &mut Sudoku<C>,
            column: usize, row: usize) -> bool {
        let size = sudoku.grid().size();
        
        if row == size {
            return true;
        }

        let next_column = (column + 1) % size;
        let next_row =
            if next_column == 0 { row + 1 } else { row };
        
        for number in shuffle(&mut self.rng, 1..=size) {
            if sudoku.is_valid_number(column, row, number).unwrap() {
                sudoku.grid_mut().set_cell(column, row, number).unwrap();

                if self.generate_rec(sudoku, next_column, next_row) {
                    return true;
                }

                sudoku.grid_mut().clear_cell(column, row).unwrap();
            }
        }

        false
    }

    /// Generates a new random [Sudoku] with all digits that matches the given
    /// parameters. If it is not possible, an error will be returned.
    ///
    /// It is guaranteed that [Sudoku::is_valid] on the result returns `true`.
    ///
    /// # Arguments
    ///
    /// * `block_width`: The horizontal dimension of one sub-block of the grid.
    /// To ensure a square grid, this is also the number of blocks that compose
    /// the grid vertically. For an ordinary Sudoku grid, this is 3. Must be
    /// greater than 0.
    /// * `block_height`: The vertical dimension of one sub-block of the grid.
    /// To ensure a square grid, this is also the number of blocks that compose
    /// the grid horizontally. For an ordinary Sudoku grid, this is 3. Must be
    /// greater than 0.
    /// * `constraint`: The constraint which will be matched by the generated
    /// Sudoku, which will also be contained and checked by the output Sudoku.
    ///
    /// # Errors
    ///
    /// * `SudokuError::InvalidDimensions` If `block_width` or `block_height`
    /// is invalid (zero).
    /// * `SudokuError::UnsatisfiableConstraint` If there are no grids with the
    /// given dimensions that match the provided `constraint`.
    pub fn generate<C: Constraint + Clone>(&mut self, block_width: usize,
            block_height: usize, constraint: C) -> SudokuResult<Sudoku<C>> {
        let mut sudoku =
            Sudoku::new_empty(block_width, block_height, constraint)?;

        if self.generate_rec(&mut sudoku, 0, 0) {
            Ok(sudoku)
        }
        else {
            Err(SudokuError::UnsatisfiableConstraint)
        }
    }
}

/// A reducer can be applied to the output of a [Generator] to remove numbers
/// from the grid as long as it is still uniquely solveable using the provided
/// [Solver]. This may be intentionally suboptimal to control the difficulty. A
/// random number generator decides which digits are removed.
///
/// [Reducer::new_default] will yield a reducer with the highest difficulty (a
/// perfect backtracking solver) and a [ThreadRng].
pub struct Reducer<S: Solver, R: Rng> {
    solver: S,
    rng: R
}

impl Reducer<BacktrackingSolver, ThreadRng> {

    /// Generates a new reducer with a [BacktrackingSolver] to check unique
    /// solveability and a [ThreadRng] to decide which digits are removed.
    pub fn new_default() -> Reducer<BacktrackingSolver, ThreadRng> {
        Reducer::new(BacktrackingSolver, rand::thread_rng())
    }
}

impl<S: Solver, R: Rng> Reducer<S, R> {

    /// Creates a new reducer with the given solver and random number gnerator.
    ///
    /// # Arguments
    ///
    /// * `solver`: A [Solver] to be used to check whether a reduced Sudoku is
    /// still uniquely solveable. This controls the difficulty by specifying a
    /// strategy that must be able to solve the Sudoku.
    /// * `rng`: A random number generator that decides which digits are
    /// removed.
    pub fn new(solver: S, rng: R) -> Reducer<S, R> {
        Reducer {
            solver,
            rng
        }
    }

    /// Reduces the given Sudoku as much as possible. That is, removes random
    /// digits until all remaining ones are necessary for the solver used by
    /// this reducer to still be able to solve the Sudoku. All changes are done
    /// to the given mutable Sudoku.
    pub fn reduce<C: Constraint + Clone>(&mut self, sudoku: &mut Sudoku<C>) {
        let size = sudoku.grid().size();
        let coords= (0..size)
            .flat_map(|column| (0..size).map(move |row| (column, row)));

        for (column, row) in shuffle(&mut self.rng, coords) {
            if let Some(number) =
                    sudoku.grid().get_cell(column, row).unwrap() {
                sudoku.grid_mut().clear_cell(column, row).unwrap();

                if let Solution::Unique(_) = self.solver.solve(sudoku) { }
                else {
                    sudoku.grid_mut().set_cell(column, row, number).unwrap();
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {

    use super::*;

    use crate::constraint::DefaultConstraint;

    const DEFAULT_BLOCK_WIDTH: usize = 3;
    const DEFAULT_BLOCK_HEIGHT: usize = 3;

    fn generate_default() -> Sudoku<DefaultConstraint> {
        let mut generator = Generator::new_default();
        generator.generate(DEFAULT_BLOCK_WIDTH, DEFAULT_BLOCK_HEIGHT,
            DefaultConstraint).unwrap()
    }

    fn reduce_default() -> Sudoku<DefaultConstraint> {
        let mut sudoku = generate_default();
        let mut reducer = Reducer::new_default();
        reducer.reduce(&mut sudoku);
        sudoku
    }

    #[test]
    fn shuffling_uniformly_distributed() {
        // 18000 experiments, 6 options (3!), so if uniformly distributed:
        // p = 1/6, my = 3000, sigma = sqrt(18000 * 1/6 * 5/6) = 50
        // with a probability of the amount being in the range [2600, 3400]
        // is more than 99,9999999999999 %.

        let mut counts = [0; 6];
        let mut rng = rand::thread_rng();
        
        for _ in 0..18000 {
            let result = shuffle(&mut rng, 1..=3);

            if result == vec![1, 2, 3] {
                counts[0] += 1;
            }
            else if result == vec![1, 3, 2] {
                counts[1] += 1;
            }
            else if result == vec![2, 1, 3] {
                counts[2] += 1;
            }
            else if result == vec![2, 3, 1] {
                counts[3] += 1;
            }
            else if result == vec![3, 1, 2] {
                counts[4] += 1;
            }
            else if result == vec![3, 2, 1] {
                counts[5] += 1;
            }
        }

        for count in counts.iter() {
            assert!(*count >= 2600 && *count <= 3400,
                "Count is not in range [2600, 3400].");
        }
    }

    #[test]
    fn generated_sudoku_valid() {
        let sudoku = generate_default();
        assert!(sudoku.is_valid(), "Generated Sudoku not valid.");
    }

    #[test]
    fn generated_sudoku_full() {
        let sudoku = generate_default();
        let size = DEFAULT_BLOCK_WIDTH * DEFAULT_BLOCK_HEIGHT;
        assert_eq!(size * size, sudoku.grid().count_clues(),
            "Generated Sudoku is not full.");
    }

    #[test]
    fn reduced_sudoku_valid_and_not_full() {
        let sudoku = reduce_default();
        let size = DEFAULT_BLOCK_WIDTH * DEFAULT_BLOCK_HEIGHT;
        assert!(sudoku.is_valid(), "Reduced Sudoku not valid.");
        assert!(sudoku.grid().count_clues() <= size * (size - 1),
            "Reduced Sudoku has too many clues.");
    }

    #[test]
    fn reduced_sudoku_uniquely_solveable() {
        let sudoku = reduce_default();
        let solver = BacktrackingSolver;
        let solution = solver.solve(&sudoku);

        if let Solution::Unique(_) = solution { }
        else {
            panic!("Reduced Sudoku not uniquely solveable.")
        }
    }

    /// This is a deliberately bad solver which only checks differet options
    /// for the top-left cell of each Sudoku. If any other cells are missing,
    /// or there are multiple options for the top-left cell, the solver returns
    /// `Solution::Ambiguous`.
    struct TopLeftSolver;

    impl Solver for TopLeftSolver {
        fn solve(&self, sudoku: &Sudoku<impl Constraint + Clone>) -> Solution {
            let size = sudoku.grid().size();
            let cells = size * size;
            let clues = sudoku.grid().count_clues();

            if clues == cells {
                // Sudoku is full anyway
                return Solution::Unique(sudoku.grid().clone());
            }
            else if clues < cells - 1 {
                // Sudoku missing other digit anyway
                return Solution::Ambiguous;
            }

            if let Some(_) = sudoku.grid().get_cell(0, 0).unwrap() {
                // Somewhere else a cell must be missing
                Solution::Ambiguous
            }
            else {
                let mut number = None;

                for i in 1..=size {
                    if sudoku.is_valid_number(0, 0, i).unwrap() {
                        if number == None {
                            number = Some(i);
                        }
                        else {
                            // Multiple options for top-left cell
                            return Solution::Ambiguous;
                        }
                    }
                }

                if let Some(number) = number {
                    let mut result_grid = sudoku.grid().clone();
                    result_grid.set_cell(0, 0, number).unwrap();
                    Solution::Unique(result_grid)
                }
                else {
                    Solution::Impossible
                }
            }
        }
    }

    #[test]
    fn reduced_sudoku_solveable_by_solver() {
        let mut sudoku = generate_default();
        let mut reducer = Reducer::new(TopLeftSolver, rand::thread_rng());
        reducer.reduce(&mut sudoku);

        let size = DEFAULT_BLOCK_WIDTH * DEFAULT_BLOCK_HEIGHT;
        assert_eq!(size * size - 1, sudoku.grid().count_clues(),
            "Reduced Sudoku missing too many clues or not reduced at all.");
        assert_eq!(None, sudoku.grid().get_cell(0, 0).unwrap(),
            "Reduced Sudoku missing wrong clue.");
    }
}