1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
//! This crate defines a set of traits which define functionality of
//! stream ciphers.
//!
//! See [RustCrypto/stream-ciphers](https://github.com/RustCrypto/stream-ciphers)
//! for ciphers implementation.
#![no_std]
#![doc(html_logo_url =
    "https://raw.githubusercontent.com/RustCrypto/meta/master/logo_small.png")]
pub extern crate generic_array;
#[cfg(feature = "dev")]
pub extern crate blobby;
#[cfg(feature = "std")]
extern crate std;

use generic_array::{GenericArray, ArrayLength};
use generic_array::typenum::Unsigned;

#[cfg(feature = "dev")]
pub mod dev;
mod errors;

pub use errors::{LoopError, InvalidKeyNonceLength};

/// Stream cipher creation trait.
///
/// It can be used for creation of synchronous and asynchronous ciphers.
pub trait NewStreamCipher: Sized {
    /// Key size in bytes
    type KeySize: ArrayLength<u8>;
    /// Nonce size in bytes
    type NonceSize: ArrayLength<u8>;

    /// Create new stream cipher instance from variable length key and nonce.
    fn new(
        key: &GenericArray<u8, Self::KeySize>,
        nonce: &GenericArray<u8, Self::NonceSize>,
    ) -> Self;

    /// Create new stream cipher instance from variable length key and nonce.
    #[inline]
    fn new_var(key: &[u8], nonce: &[u8]) -> Result<Self, InvalidKeyNonceLength> {
        let kl = Self::KeySize::to_usize();
        let nl = Self::NonceSize::to_usize();
        if key.len() != kl || nonce.len() != nl {
            Err(InvalidKeyNonceLength)
        } else {
            let key = GenericArray::from_slice(key);
            let nonce = GenericArray::from_slice(nonce);
            Ok(Self::new(key, nonce))
        }
    }
}

/// Synchronous stream cipher core trait.
pub trait SyncStreamCipher {
    /// Apply keystream to the data.
    ///
    /// It will XOR generated keystream with the data, which can be both
    /// encryption and decryption.
    ///
    /// # Panics
    /// If end of the keystream will be reached with the given data length,
    /// method will panic without modifying the provided `data`.
    #[inline]
    fn apply_keystream(&mut self, data: &mut [u8]) {
        let res = self.try_apply_keystream(data);
        if res.is_err() {
            panic!("stream cipher loop detected");
        }
    }

    /// Apply keystream to the data, but return an error if end of a keystream
    /// will be reached.
    ///
    /// If end of the keystream will be achieved with the given data length,
    /// method will return `Err(LoopError)` without modifying provided `data`.
    fn try_apply_keystream(&mut self, data: &mut [u8]) -> Result<(), LoopError>;
}

/// Synchronous stream cipher seeking trait.
pub trait SyncStreamCipherSeek {
    /// Return current position of a keystream in bytes from the beginning.
    fn current_pos(&self) -> u64;

    /// Seek keystream to the given `pos` in bytes.
    fn seek(&mut self, pos: u64);
}

/// Stream cipher core trait which covers both synchronous and asynchronous
/// ciphers.
///
/// Note that for synchronous ciphers `encrypt` and `decrypt` are equivalent to
/// each other.
pub trait StreamCipher {
    /// Encrypt data in place.
    fn encrypt(&mut self, data: &mut [u8]);

    /// Decrypt data in place.
    fn decrypt(&mut self, data: &mut [u8]);
}

impl<C: SyncStreamCipher> StreamCipher for C {
    #[inline(always)]
    fn encrypt(&mut self, data: &mut [u8]) {
        SyncStreamCipher::apply_keystream(self, data);
    }

    #[inline(always)]
    fn decrypt(&mut self, data: &mut [u8]) {
        SyncStreamCipher::apply_keystream(self, data);
    }
}