1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
use core::fmt;
use core::marker::PhantomData;
use core::ptr;

use nb::block;

use crate::gpio::{AltMode, PinMode};
use crate::hal;
use crate::hal::prelude::*;
pub use crate::pac::{LPUART1, USART1, USART2, USART4, USART5};
use crate::rcc::{Enable, Rcc, LSE};
use embedded_time::rate::{Baud, Extensions};

#[cfg(any(feature = "stm32l0x1", feature = "stm32l0x2", feature = "stm32l0x3"))]
use core::{
    ops::{Deref, DerefMut},
    pin::Pin,
};

#[cfg(any(feature = "stm32l0x1", feature = "stm32l0x2", feature = "stm32l0x3"))]
use as_slice::{AsMutSlice, AsSlice};

#[cfg(any(feature = "stm32l0x1", feature = "stm32l0x2", feature = "stm32l0x3"))]
pub use crate::dma;

#[cfg(any(feature = "stm32l0x1", feature = "stm32l0x2", feature = "stm32l0x3"))]
use crate::dma::Buffer;

#[cfg(any(
    feature = "io-STM32L031",
    feature = "io-STM32L051",
    feature = "io-STM32L071"
))]
use crate::gpio::gpioc::*;
use crate::gpio::{gpioa::*, gpiob::*};
#[cfg(any(feature = "io-STM32L071"))]
use crate::gpio::{gpiod::*, gpioe::*};

/// Serial error
#[derive(Debug)]
#[non_exhaustive]
pub enum Error {
    /// Framing error
    Framing,
    /// Noise error
    Noise,
    /// RX buffer overrun
    Overrun,
    /// Parity check error
    Parity,
}

/// Interrupt event
pub enum Event {
    /// New data has been received.
    ///
    /// This event is cleared by reading a character from the UART.
    Rxne,
    /// New data can be sent.
    ///
    /// This event is cleared by writing a character to the UART.
    ///
    /// Note that this event does not mean that the character in the TX buffer
    /// is fully transmitted. It only means that the TX buffer is ready to take
    /// another character to be transmitted.
    Txe,
    /// Idle line state detected.
    Idle,
}

pub enum WordLength {
    DataBits8,
    DataBits9,
}

pub enum Parity {
    ParityNone,
    ParityEven,
    ParityOdd,
}

pub enum StopBits {
    #[doc = "1 stop bit"]
    STOP1,
    #[doc = "0.5 stop bits"]
    STOP0P5,
    #[doc = "2 stop bits"]
    STOP2,
    #[doc = "1.5 stop bits"]
    STOP1P5,
}

pub struct Config {
    pub baudrate: Baud,
    pub wordlength: WordLength,
    pub parity: Parity,
    pub stopbits: StopBits,
}

impl Config {
    pub fn baudrate(mut self, baudrate: impl Into<Baud>) -> Self {
        self.baudrate = baudrate.into();
        self
    }

    pub fn parity_none(mut self) -> Self {
        self.parity = Parity::ParityNone;
        self
    }

    pub fn parity_even(mut self) -> Self {
        self.parity = Parity::ParityEven;
        self
    }

    pub fn parity_odd(mut self) -> Self {
        self.parity = Parity::ParityOdd;
        self
    }

    pub fn wordlength_8(mut self) -> Self {
        self.wordlength = WordLength::DataBits8;
        self
    }

    pub fn wordlength_9(mut self) -> Self {
        self.wordlength = WordLength::DataBits9;
        self
    }

    pub fn stopbits(mut self, stopbits: StopBits) -> Self {
        self.stopbits = stopbits;
        self
    }
}

#[derive(Debug)]
pub struct InvalidConfig;

impl Default for Config {
    fn default() -> Config {
        let baudrate = 9_600_u32.Bd();
        Config {
            baudrate,
            wordlength: WordLength::DataBits8,
            parity: Parity::ParityNone,
            stopbits: StopBits::STOP1,
        }
    }
}

/// Trait to mark serial pins with transmit capability.
pub trait TxPin<USART> {
    fn setup(&self);
}

/// Trait to mark serial pins with receive capability.
pub trait RxPin<USART> {
    fn setup(&self);
}

/// Macro to implement `TxPin` / `RxPin` for a certain pin, using a certain
/// alternative function and for a certain serial peripheral.
macro_rules! impl_pins {
    ($($pin:ident, $alt:ident, $instance:ty, $trait:ident;)*) => {
        $(
            impl<MODE: PinMode> $trait<$instance> for $pin<MODE> {
                fn setup(&self) {
                    self.set_alt_mode(AltMode::$alt);
                }
            }
        )*
    }
}

#[cfg(feature = "io-STM32L021")]
impl_pins!(
    PA0, AF0, USART2, RxPin;
    PA0, AF6, LPUART1, RxPin;
    PA1, AF6, LPUART1, TxPin;
    PA2, AF4, USART2, TxPin;
    PA2, AF6, LPUART1, TxPin;
    PA3, AF4, USART2, RxPin;
    PA3, AF6, LPUART1, RxPin;
    PA4, AF6, LPUART1, TxPin;
    PA9, AF4, USART2, TxPin;
    PA10, AF4, USART2, RxPin;
    PA13, AF6, LPUART1, RxPin;
    PA14, AF4, USART2, TxPin;
    PA14, AF6, LPUART1, TxPin;
    PA15, AF4, USART2, RxPin;
    PB6, AF0, USART2, TxPin;
    PB6, AF6, LPUART1, TxPin;
    PB7, AF0, USART2, RxPin;
    PB7, AF6, LPUART1, RxPin;
    PB8, AF0, USART2, TxPin;
);

#[cfg(feature = "io-STM32L031")]
impl_pins!(
    PA2, AF4, USART2, TxPin;
    PA2, AF6, LPUART1, TxPin;
    PA3, AF4, USART2, RxPin;
    PA3, AF6, LPUART1, RxPin;
    PA9, AF4, USART2, TxPin;
    PA10, AF4, USART2, RxPin;
    PA13, AF6, LPUART1, RxPin;
    PA14, AF4, USART2, TxPin;
    PA14, AF6, LPUART1, TxPin;
    PA15, AF4, USART2, RxPin;
    PB6, AF0, USART2, TxPin;
    PB7, AF0, USART2, RxPin;
    PB10, AF6, LPUART1, TxPin;
    PB11, AF6, LPUART1, RxPin;
    PC0, AF6, LPUART1, RxPin;
);

#[cfg(feature = "io-STM32L051")]
impl_pins!(
    PA2, AF4, USART2, TxPin;
    PA3, AF4, USART2, RxPin;
    PA9, AF4, USART1, TxPin;
    PA10, AF4, USART1, RxPin;
    PA14, AF4, USART2, TxPin;
    PA15, AF4, USART2, RxPin;
    PB6, AF0, USART1, TxPin;
    PB7, AF0, USART1, RxPin;
    PB10, AF4, LPUART1, TxPin;
    PB11, AF4, LPUART1, RxPin;
    PC4, AF2, LPUART1, TxPin;
    PC5, AF2, LPUART1, RxPin;
    PC10, AF0, LPUART1, TxPin;
    PC11, AF0, LPUART1, RxPin;
);

#[cfg(feature = "io-STM32L071")]
impl_pins!(
    PA0, AF6, USART4, TxPin;
    PA1, AF6, USART4, RxPin;
    PA2, AF4, USART2, TxPin;
    PA2, AF6, LPUART1, TxPin;
    PA3, AF4, USART2, RxPin;
    PA3, AF6, LPUART1, RxPin;
    PA9, AF4, USART1, TxPin;
    PA10, AF4, USART1, RxPin;
    PA13, AF6, LPUART1, RxPin;
    PA14, AF4, USART2, TxPin;
    PA14, AF6, LPUART1, TxPin;
    PA15, AF4, USART2, RxPin;
    PB3, AF6, USART5, TxPin;
    PB4, AF6, USART5, RxPin;
    PB6, AF0, USART1, TxPin;
    PB7, AF0, USART1, RxPin;
    PB10, AF4, LPUART1, TxPin;
    PB10, AF7, LPUART1, RxPin;
    PB11, AF4, LPUART1, RxPin;
    PB11, AF7, LPUART1, TxPin;
    PC0, AF6, LPUART1, RxPin;
    PC1, AF6, LPUART1, TxPin;
    PC4, AF2, LPUART1, TxPin;
    PC5, AF2, LPUART1, RxPin;
    PC10, AF0, LPUART1, TxPin;
    PC10, AF6, USART4, TxPin;
    PC11, AF0, LPUART1, RxPin;
    PC11, AF6, USART4, RxPin;
    PC12, AF2, USART5, TxPin;
    PD2, AF6, USART5, RxPin;
    PD5, AF0, USART2, TxPin;
    PD6, AF0, USART2, RxPin;
    PD8, AF0, LPUART1, TxPin;
    PD9, AF0, LPUART1, RxPin;
    PE8, AF6, USART4, TxPin;
    PE9, AF6, USART4, RxPin;
    PE10, AF6, USART5, TxPin;
    PE11, AF6, USART5, RxPin;
);

/// Serial abstraction
pub struct Serial<USART> {
    usart: USART,
    rx: Rx<USART>,
    tx: Tx<USART>,
}

/// Serial receiver
pub struct Rx<USART> {
    _usart: PhantomData<USART>,
}

/// Serial transmitter
pub struct Tx<USART> {
    _usart: PhantomData<USART>,
}

macro_rules! usart {
    ($(
        $USARTX:ident: ($usartX:ident, $pclkX:ident, $SerialExt:ident),
    )+) => {
        $(
            pub trait $SerialExt<TX, RX> {
                fn usart(self, tx: TX, rx: RX, config: Config, rcc: &mut Rcc) -> Result<Serial<$USARTX>, InvalidConfig>;
            }

            impl<TX, RX> $SerialExt<TX, RX> for $USARTX
                where
                    TX: TxPin<$USARTX>,
                    RX: RxPin<$USARTX>,
            {
                fn usart(self, tx: TX, rx: RX, config: Config, rcc: &mut Rcc) -> Result<Serial<$USARTX>, InvalidConfig> {
                    Serial::$usartX(self, tx, rx, config, rcc)
                }
            }

            impl Serial<$USARTX> {
                pub fn $usartX<TX, RX>(
                    usart: $USARTX,
                    tx: TX,
                    rx: RX,
                    config: Config,
                    rcc: &mut Rcc,
                ) -> Result<Self, InvalidConfig>
                where
                    TX: TxPin<$USARTX>,
                    RX: RxPin<$USARTX>,
                {
                    tx.setup();
                    rx.setup();

                    // Enable clock for USART
                    <$USARTX>::enable(rcc);

                    // Calculate correct baudrate divisor on the fly
                    let div = (rcc.clocks.$pclkX().0 * 25) / (4 * config.baudrate.0);
                    let mantissa = div / 100;
                    let fraction = ((div - mantissa * 100) * 16 + 50) / 100;
                    let mut brr = mantissa << 4 | fraction;

                    if stringify!($usartX) == "lpuart1" {
                        brr *= 256
                    }

                    usart
                        .brr
                        .write(|w| unsafe { w.bits(brr) });

                    // Reset other registers to disable advanced USART features
                    usart.cr2.reset();

                    // Enable DMA
                    usart.cr3.write(|w|
                        w
                            // Stop DMA transfer on reception error
                            .ddre().disabled()
                            // Enable DMA
                            .dmat().enabled()
                            .dmar().enabled()
                    );

                    // Enable transmission and receiving
                    // and configure frame
                    usart.cr1.write(|w| {
                        w.ue()
                            .set_bit()
                            .te()
                            .set_bit()
                            .re()
                            .set_bit()
                            .m0()
                            .bit(match config.wordlength {
                                WordLength::DataBits8 => false,
                                WordLength::DataBits9 => true,
                            }).pce()
                            .bit(match config.parity {
                                Parity::ParityNone => false,
                                _ => true,
                            }).ps()
                            .bit(match config.parity {
                                Parity::ParityOdd => true,
                                _ => false,
                            })
                    });

                    usart.cr2.write(|w|
                        w.stop().bits(match config.stopbits {
                            StopBits::STOP1 => 0b00,
                            StopBits::STOP0P5 => 0b01,
                            StopBits::STOP2 => 0b10,
                            StopBits::STOP1P5 => 0b11,
                        })
                    );
                    Ok(Serial {
                        usart,
                        tx: Tx { _usart: PhantomData },
                        rx: Rx { _usart: PhantomData },
                    })
                }

                /// Starts listening for an interrupt event
                pub fn listen(&mut self, event: Event) {
                    match event {
                        Event::Rxne => {
                            self.usart.cr1.modify(|_, w| w.rxneie().set_bit())
                        },
                        Event::Txe => {
                            self.usart.cr1.modify(|_, w| w.txeie().set_bit())
                        },
                        Event::Idle => {
                            self.usart.cr1.modify(|_, w| w.idleie().set_bit())
                        },
                    }
                }

                /// Stop listening for an interrupt event
                pub fn unlisten(&mut self, event: Event) {
                    match event {
                        Event::Rxne => {
                            self.usart.cr1.modify(|_, w| w.rxneie().clear_bit())
                        },
                        Event::Txe => {
                            self.usart.cr1.modify(|_, w| w.txeie().clear_bit())
                        },
                        Event::Idle => {
                            self.usart.cr1.modify(|_, w| w.idleie().clear_bit())
                        },
                    }
                }

                /// Returns a pending and enabled `Event`.
                ///
                /// Multiple `Event`s can be signaled at the same time. In that case, an arbitrary
                /// pending event will be returned. Clearing the event condition will cause this
                /// method to return the other pending event(s).
                ///
                /// For an event to be returned by this method, it must first be enabled by calling
                /// `listen`.
                ///
                /// This method will never clear a pending event. If the event condition is not
                /// resolved by the user, it will be returned again by the next call to
                /// `pending_event`.
                pub fn pending_event(&self) -> Option<Event> {
                    let cr1 = self.usart.cr1.read();
                    let isr = self.usart.isr.read();

                    if cr1.rxneie().bit_is_set() && isr.rxne().bit_is_set() {
                        // Give highest priority to RXNE to help with avoiding overrun
                        Some(Event::Rxne)
                    } else if cr1.txeie().bit_is_set() && isr.txe().bit_is_set() {
                        Some(Event::Txe)
                    } else if cr1.idleie().bit_is_set() && isr.idle().bit_is_set() {
                        Some(Event::Idle)
                    } else {
                        None
                    }
                }

                /// Checks for reception errors that may have occurred.
                ///
                /// Note that multiple errors can be signaled at the same time. In that case,
                /// calling this function repeatedly will return the remaining errors.
                pub fn check_errors(&mut self) -> Result<(), Error> {
                    self.rx.check_errors()
                }

                /// Clears any signaled errors without returning them.
                pub fn clear_errors(&mut self) {
                    self.rx.clear_errors()
                }

                pub fn split(self) -> (Tx<$USARTX>, Rx<$USARTX>) {
                    (self.tx, self.rx)
                }

                pub fn release(self) -> $USARTX {
                    self.usart
                }
            }

            impl hal::serial::Read<u8> for Serial<$USARTX> {
                type Error = Error;

                fn read(&mut self) -> nb::Result<u8, Error> {
                    self.rx.read()
                }
            }

             impl hal::serial::Write<u8> for  Serial<$USARTX> {
                type Error = Error;

                fn flush(&mut self) -> nb::Result<(), Self::Error> {
                    self.tx.flush()
                }

                fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
                    self.tx.write(byte)
                }
            }

            impl Rx<$USARTX> {
                /// Returns true if the line idle status is set
                /// This reads the ISR register's IDLE bit. This bit is set by hardware
                /// when an Idle Line is detected. And can be cleared by calling `clear_idle_interrupt`.
                ///
                /// This flag is set by hardware even when interrupts are disabled (IDLEIE=0 in CR1)
                pub fn is_idle(&self) -> bool {
                    let isr = unsafe { (*$USARTX::ptr()).isr.read() };
                    isr.idle().bit_is_set()
                }

                /// Returns true if the rx register is not empty (and can be read)
                pub fn is_rx_not_empty(&self) -> bool {
                    let isr = unsafe { (*$USARTX::ptr()).isr.read() };
                    isr.rxne().bit_is_set()
                }

                /// Clear idle line interrupt flag
                pub fn clear_idle_interrupt(&self) {
                    let icr = unsafe { &(*$USARTX::ptr()).icr };
                    icr.write(|w| w.idlecf().set_bit());
                }

                /// Checks for reception errors that may have occurred.
                ///
                /// Note that multiple errors can be signaled at the same time. In that case,
                /// calling this function repeatedly will return the remaining errors.
                pub fn check_errors(&mut self) -> Result<(), Error> {
                    let isr = unsafe { (*$USARTX::ptr()).isr.read() };
                    let icr = unsafe { &(*$USARTX::ptr()).icr };

                    // We don't want to drop any errors, so check each error bit in sequence. If
                    // any bit is set, clear it and return its error.
                    if isr.pe().bit_is_set() {
                        icr.write(|w| {w.pecf().set_bit()});
                        return Err(Error::Parity.into());
                    } else if isr.fe().bit_is_set() {
                        icr.write(|w| {w.fecf().set_bit()});
                        return Err(Error::Framing.into());
                    } else if isr.nf().bit_is_set() {
                        icr.write(|w| {w.ncf().set_bit()});
                        return Err(Error::Noise.into());
                    } else if isr.ore().bit_is_set() {
                        icr.write(|w| {w.orecf().set_bit()});
                        return Err(Error::Overrun.into());
                    }

                    Ok(())
                }

                /// Clears any signaled errors without returning them.
                pub fn clear_errors(&mut self) {
                    let icr = unsafe { &(*$USARTX::ptr()).icr };

                    icr.write(|w| w
                        .pecf().set_bit()
                        .fecf().set_bit()
                        .ncf().set_bit()
                        .orecf().set_bit()
                    );
                }
            }

            /// DMA operations.
            #[cfg(any(feature = "stm32l0x1", feature = "stm32l0x2", feature = "stm32l0x3"))]
            impl Rx<$USARTX> {
                pub fn read_all<Buffer, Channel>(self,
                    dma:     &mut dma::Handle,
                    buffer:  Pin<Buffer>,
                    channel: Channel,
                )
                    -> dma::Transfer<Self, Channel, Buffer, dma::Ready>
                    where
                        Self:           dma::Target<Channel>,
                        Buffer:         DerefMut + 'static,
                        Buffer::Target: AsMutSlice<Element=u8>,
                        Channel:        dma::Channel,
                {
                    let num_words = (*buffer).len();
                    self.read_some(dma, buffer, num_words, channel)
                }

                pub fn read_some<Buffer, Channel>(self,
                    dma:     &mut dma::Handle,
                    buffer:  Pin<Buffer>,
                    num_words: usize,
                    channel: Channel,
                )
                    -> dma::Transfer<Self, Channel, Buffer, dma::Ready>
                    where
                        Self:           dma::Target<Channel>,
                        Buffer:         DerefMut + 'static,
                        Buffer::Target: AsMutSlice<Element=u8>,
                        Channel:        dma::Channel,
                {
                    // Safe, because we're only taking the address of a
                    // register.
                    let address =
                        &unsafe { &*$USARTX::ptr() }.rdr as *const _ as u32;

                    // Safe, because the trait bounds of this method guarantee
                    // that the buffer can be written to.
                    unsafe {
                        dma::Transfer::new(
                            dma,
                            self,
                            channel,
                            buffer,
                            num_words,
                            address,
                            dma::Priority::high(),
                            dma::Direction::peripheral_to_memory(),
                            false,
                        )
                    }
                }
            }

            impl hal::serial::Read<u8> for Rx<$USARTX> {
                type Error = Error;

                fn read(&mut self) -> nb::Result<u8, Error> {
                    self.check_errors()?;

                    // NOTE(unsafe) atomic read with no side effects
                    let isr = unsafe { (*$USARTX::ptr()).isr.read() };

                    // Check if a byte is available
                    if isr.rxne().bit_is_set() {
                        // Read the received byte
                        // NOTE(read_volatile) see `write_volatile` below
                        Ok(unsafe {
                            ptr::read_volatile(&(*$USARTX::ptr()).rdr as *const _ as *const _)
                        })
                    } else {
                        Err(nb::Error::WouldBlock)
                    }
                }
            }

            impl hal::serial::Write<u8> for Tx<$USARTX> {
                type Error = Error;

                fn flush(&mut self) -> nb::Result<(), Self::Error> {
                    // NOTE(unsafe) atomic read with no side effects
                    let isr = unsafe { (*$USARTX::ptr()).isr.read() };

                    // Check TC bit on ISR
                    if isr.tc().bit_is_set() {
                        // Frame complete, set the TC Clear Flag
                        unsafe {
                            (*$USARTX::ptr()).icr.write(|w| {w.tccf().set_bit()});
                        }
                        Ok(())
                    } else {
                        Err(nb::Error::WouldBlock)
                    }
                }

                fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
                    // NOTE(unsafe) atomic read with no side effects
                    let isr = unsafe { (*$USARTX::ptr()).isr.read() };

                    if isr.txe().bit_is_set() {
                        // NOTE(unsafe) atomic write to stateless register
                        // NOTE(write_volatile) 8-bit write that's not possible through the svd2rust API
                        unsafe { ptr::write_volatile(&(*$USARTX::ptr()).tdr as *const _ as *mut _, byte) }

                        Ok(())
                    } else {
                        Err(nb::Error::WouldBlock)
                    }
                }
            }

            impl Tx<$USARTX> {
                /// Returns true if the tx register is empty (and can accept data)
                pub fn is_tx_empty(&self) -> bool {
                    let isr = unsafe { (*$USARTX::ptr()).isr.read() };
                    isr.txe().bit_is_set()
                }
            }

            #[cfg(any(feature = "stm32l0x1", feature = "stm32l0x2", feature = "stm32l0x3"))]
            impl Tx<$USARTX> {
                pub fn write_all<Buffer, Channel>(self,
                    dma:     &mut dma::Handle,
                    buffer:  Pin<Buffer>,
                    channel: Channel,
                )
                    -> dma::Transfer<Self, Channel, Buffer, dma::Ready>
                    where
                        Self:           dma::Target<Channel>,
                        Buffer:         Deref + 'static,
                        Buffer::Target: AsSlice<Element=u8>,
                        Channel:        dma::Channel,
                {
                    let num_words = (*buffer).len();
                    self.write_some(dma, buffer, num_words, channel)
                }

                pub fn write_some<Buffer, Channel>(self,
                    dma:     &mut dma::Handle,
                    buffer:  Pin<Buffer>,
                    num_words:  usize,
                    channel: Channel,
                )
                    -> dma::Transfer<Self, Channel, Buffer, dma::Ready>
                    where
                        Self:           dma::Target<Channel>,
                        Buffer:         Deref + 'static,
                        Buffer::Target: AsSlice<Element=u8>,
                        Channel:        dma::Channel,
                {
                    // Safe, because we're only taking the address of a
                    // register.
                    let address =
                        &unsafe { &*$USARTX::ptr() }.tdr as *const _ as u32;

                    // Safe, because the trait bounds of this method guarantee
                    // that the buffer can be read from.
                    unsafe {
                        dma::Transfer::new(
                            dma,
                            self,
                            channel,
                            buffer,
                            num_words,
                            address,
                            dma::Priority::high(),
                            dma::Direction::memory_to_peripheral(),
                            false,
                        )
                    }
                }
            }
        )+
    }
}

// LPUART1 and USART2 are available on category 1/2/3/5 MCUs
#[cfg(any(
    feature = "io-STM32L021",
    feature = "io-STM32L031",
    feature = "io-STM32L051",
    feature = "io-STM32L071",
))]
usart! {
    LPUART1: (lpuart1, apb1_clk, Serial1LpExt),
    USART2: (usart2, apb1_clk, Serial2Ext),
}

// USART1 is available on category 3/5 MCUs
#[cfg(any(feature = "io-STM32L051", feature = "io-STM32L071"))]
usart! {
    USART1: (usart1, apb1_clk, Serial1Ext),
}

// USART4 and USART5 are available on category 5 MCUs
#[cfg(feature = "io-STM32L071")]
usart! {
    USART4: (usart4, apb1_clk, Serial4Ext),
    USART5: (usart5, apb1_clk, Serial5Ext),
}

impl Serial<LPUART1> {
    /// Switches LPUART1 clock course to LSE
    ///
    /// Consumes LSE token, to get guarantee that
    /// LSE clocks are configured.
    ///
    /// At the moment configured baudrate is ignored
    /// and LPUART1 is forced to 9600 when clocked by LSE,
    /// assuming that LSE is 32768
    /// (and it must be so according to RM).
    pub fn use_lse(&mut self, rcc: &mut Rcc, _: &LSE) {
        //Disable transmitter
        self.usart.cr1.modify(|_, w| w.te().disabled());
        while self.usart.isr.read().tc().bit_is_clear() {}

        //Disable LPUART1
        self.usart.cr1.modify(|_, w| w.ue().disabled());

        //Reconfigure LPUART to use LSE
        rcc.rb.ccipr.modify(|_, w| w.lpuart1sel().lse());

        //Recalculate baudrate
        //TODO requested baudrate value from the config should be stored somehow and used here
        //but at the moment hardcoded 9600 will be used
        //LSE is assumed to be 32768Hz, as RM says that LSE should only be 32768.
        let brr = 256 * 32768 / 9600;
        self.usart.brr.write(|w| unsafe { w.bits(brr) });

        // Enable LPUART1
        self.usart
            .cr1
            .write(|w| w.ue().set_bit().te().set_bit().re().set_bit());
    }
}

impl<USART> fmt::Write for Serial<USART>
where
    Serial<USART>: hal::serial::Write<u8>,
{
    fn write_str(&mut self, s: &str) -> fmt::Result {
        let _ = s.as_bytes().iter().map(|c| block!(self.write(*c))).last();

        //self.flush().map_err(|_| fmt::Error)?;

        Ok(())
    }
}

impl<USART> fmt::Write for Tx<USART>
where
    Tx<USART>: hal::serial::Write<u8>,
{
    fn write_str(&mut self, s: &str) -> fmt::Result {
        let _ = s.as_bytes().iter().map(|c| block!(self.write(*c))).last();

        //self.flush().map_err(|_| fmt::Error)?;

        Ok(())
    }
}