1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#[doc = "Register `EGR` writer"]
pub struct W(crate::W<EGR_SPEC>);
impl core::ops::Deref for W {
    type Target = crate::W<EGR_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl core::ops::DerefMut for W {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}
impl From<crate::W<EGR_SPEC>> for W {
    #[inline(always)]
    fn from(writer: crate::W<EGR_SPEC>) -> Self {
        W(writer)
    }
}
#[doc = "Update generation This bit can be set by software, it is automatically cleared by hardware.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum UG_AW {
    #[doc = "0: No action"]
    B_0X0 = 0,
    #[doc = "1: Re-initialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared. "]
    B_0X1 = 1,
}
impl From<UG_AW> for bool {
    #[inline(always)]
    fn from(variant: UG_AW) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `UG` writer - Update generation This bit can be set by software, it is automatically cleared by hardware."]
pub struct UG_W<'a> {
    w: &'a mut W,
}
impl<'a> UG_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: UG_AW) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "No action"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(UG_AW::B_0X0)
    }
    #[doc = "Re-initialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared."]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(UG_AW::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x01) | (value as u32 & 0x01);
        self.w
    }
}
#[doc = "Capture/compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or is sent if enabled. If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum CC1G_AW {
    #[doc = "0: No action"]
    B_0X0 = 0,
    #[doc = "1: A capture/compare event is generated on channel 1:"]
    B_0X1 = 1,
}
impl From<CC1G_AW> for bool {
    #[inline(always)]
    fn from(variant: CC1G_AW) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `CC1G` writer - Capture/compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or is sent if enabled. If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high."]
pub struct CC1G_W<'a> {
    w: &'a mut W,
}
impl<'a> CC1G_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: CC1G_AW) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "No action"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(CC1G_AW::B_0X0)
    }
    #[doc = "A capture/compare event is generated on channel 1:"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(CC1G_AW::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 1)) | ((value as u32 & 0x01) << 1);
        self.w
    }
}
impl W {
    #[doc = "Bit 0 - Update generation This bit can be set by software, it is automatically cleared by hardware."]
    #[inline(always)]
    pub fn ug(&mut self) -> UG_W {
        UG_W { w: self }
    }
    #[doc = "Bit 1 - Capture/compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or is sent if enabled. If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high."]
    #[inline(always)]
    pub fn cc1g(&mut self) -> CC1G_W {
        CC1G_W { w: self }
    }
    #[doc = "Writes raw bits to the register."]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.0.bits(bits);
        self
    }
}
#[doc = "event generation register\n\nThis register you can [`write_with_zero`](crate::generic::Reg::write_with_zero), [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write). See [API](https://docs.rs/svd2rust/#read--modify--write-api).\n\nFor information about available fields see [egr](index.html) module"]
pub struct EGR_SPEC;
impl crate::RegisterSpec for EGR_SPEC {
    type Ux = u32;
}
#[doc = "`write(|w| ..)` method takes [egr::W](W) writer structure"]
impl crate::Writable for EGR_SPEC {
    type Writer = W;
}
#[doc = "`reset()` method sets EGR to value 0"]
impl crate::Resettable for EGR_SPEC {
    #[inline(always)]
    fn reset_value() -> Self::Ux {
        0
    }
}