1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
//! HAL for external SDRAM

use core::cmp;
use core::convert::TryInto;
use core::marker::PhantomData;

use embedded_hal::blocking::delay::DelayUs;

use crate::fmc::{AddressPinSet, FmcBank, FmcRegisters};
use crate::FmcPeripheral;

use crate::ral::{fmc, modify_reg, write_reg};

/// FMC SDRAM Configuration Structure definition
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct SdramConfiguration {
    /// Number of bits of column address
    pub column_bits: u8,
    /// Number of bits of column address
    pub row_bits: u8,
    /// Memory device width
    pub memory_data_width: u8,
    /// Number of the device's internal banks
    pub internal_banks: u8,
    /// SDRAM CAS latency in number of memory clock cycles
    pub cas_latency: u8,
    /// Enables the SDRAM device to be accessed in write mode
    pub write_protection: bool,
    /// This bit enable the SDRAM controller to anticipate the next read
    pub read_burst: bool,
    /// Delay in system clock cycles on read data path
    pub read_pipe_delay_cycles: u8,
}

/// FMC SDRAM Timing parameters structure definition
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct SdramTiming {
    /// Time between applying a valid clock and any command other than
    /// COMMAND INHIBIT or NOP
    pub startup_delay_ns: u32,
    /// Maximum SD clock frequency to make timing
    pub max_sd_clock_hz: u32,
    /// Period between refresh cycles in nanoseconds
    pub refresh_period_ns: u32,
    /// Delay between a LOAD MODE register command and an ACTIVATE command
    pub mode_register_to_active: u32,
    /// Delay from releasing self refresh to next command
    pub exit_self_refresh: u32,
    /// Delay between an ACTIVATE and a PRECHARGE command
    pub active_to_precharge: u32,
    /// Auto refresh command duration
    pub row_cycle: u32,
    /// Delay between a PRECHARGE command and another command
    pub row_precharge: u32,
    /// Delay between an ACTIVATE command and READ/WRITE command
    pub row_to_column: u32,
}

/// Respresents a model of SDRAM chip
pub trait SdramChip {
    /// Value of the mode register
    const MODE_REGISTER: u16;

    /// SDRAM controller configuration
    const CONFIG: SdramConfiguration;

    /// Timing parameters
    const TIMING: SdramTiming;
}

/// SDRAM Controller
#[allow(missing_debug_implementations)]
pub struct Sdram<FMC, IC> {
    /// SDRAM bank
    target_bank: SdramTargetBank,
    /// FMC memory bank to use
    fmc_bank: FmcBank,
    /// Parameters for the SDRAM IC
    _chip: PhantomData<IC>,
    /// FMC peripheral
    fmc: FMC,
    /// Register access
    regs: FmcRegisters,
}

/// SDRAM Commands
#[derive(Clone, Copy, Debug, PartialEq)]
#[allow(unused)]
enum SdramCommand {
    NormalMode,
    ClkEnable,
    Pall,
    Autorefresh(u8),
    LoadMode(u16),
    Selfrefresh,
    Powerdown,
}
/// Target bank for SDRAM commands
#[derive(Clone, Copy, Debug, PartialEq)]
#[allow(unused)]
pub enum SdramTargetBank {
    /// Targeting the 1st SDRAM bank
    Bank1,
    /// Targeting the 2nd SDRAM bank
    Bank2,
    /// Targeting both SDRAM banks
    Both,
}
impl From<u32> for SdramTargetBank {
    fn from(n: u32) -> Self {
        match n {
            1 => SdramTargetBank::Bank1,
            2 => SdramTargetBank::Bank2,
            _ => unimplemented!(),
        }
    }
}

/// SDRAM target bank and corresponding FMC Bank
pub trait SdramPinSet {
    /// External SDRAM bank
    const TARGET: SdramTargetBank;
    /// Corresponding FMC bank to map this to
    const FMC: FmcBank;
}

/// Type to mark SDRAM on Bank 1 of FMC controller
#[derive(Clone, Copy, Debug)]
pub struct SdramBank1;
impl SdramPinSet for SdramBank1 {
    const TARGET: SdramTargetBank = SdramTargetBank::Bank1;
    const FMC: FmcBank = FmcBank::Bank5;
}

/// Type to mark SDRAM on Bank 2 of FMC controller
#[derive(Clone, Copy, Debug)]
pub struct SdramBank2;
impl SdramPinSet for SdramBank2 {
    const TARGET: SdramTargetBank = SdramTargetBank::Bank2;
    const FMC: FmcBank = FmcBank::Bank6;
}

/// Set of pins for an SDRAM, that corresponds to a specific bank
pub trait PinsSdram<Bank: SdramPinSet, Address: AddressPinSet> {
    /// The number of SDRAM banks addressable with this set of pins
    const NUMBER_INTERNAL_BANKS: u8;
}

/// Like `modfiy_reg`, but applies to bank 1 or 2 based on a varaiable
macro_rules! modify_reg_banked {
    ( $periph:path, $instance:expr, $bank:expr, $reg1:ident, $reg2:ident, $( $field:ident : $value:expr ),+ ) => {{
        use SdramTargetBank::*;

        match $bank {
            Bank1 => modify_reg!( $periph, $instance, $reg1, $( $field : $value ),*),
            Bank2 => modify_reg!( $periph, $instance, $reg2, $( $field : $value ),*),
            _ => panic!(),
        }
    }};
}

impl<IC: SdramChip, FMC: FmcPeripheral> Sdram<FMC, IC> {
    /// New SDRAM instance
    ///
    /// `_pins` must be a set of pins connecting to an SDRAM on the FMC
    /// controller
    ///
    /// # Panics
    ///
    /// * Panics if there are not enough address lines in `PINS` to access the
    /// whole SDRAM
    ///
    /// * Panics if there are not enough bank address lines in `PINS` to access
    /// the whole SDRAM
    pub fn new<PINS, BANK, ADDR>(fmc: FMC, _pins: PINS, _chip: IC) -> Self
    where
        PINS: PinsSdram<BANK, ADDR>,
        ADDR: AddressPinSet,
        BANK: SdramPinSet,
    {
        assert!(
            ADDR::ADDRESS_PINS >= IC::CONFIG.row_bits,
            "Not enough address pins to access all SDRAM rows"
        );
        assert!(
            ADDR::ADDRESS_PINS >= IC::CONFIG.column_bits,
            "Not enough address pins to access all SDRAM colums"
        );
        assert!(
            PINS::NUMBER_INTERNAL_BANKS >= IC::CONFIG.internal_banks,
            "Not enough bank address pins to access all internal banks"
        );

        Sdram {
            target_bank: BANK::TARGET,
            fmc_bank: BANK::FMC,
            _chip: PhantomData,
            fmc,
            regs: FmcRegisters::new::<FMC>(),
        }
    }

    /// New SDRAM instance
    ///
    /// `bank` denotes which SDRAM bank to target. This can be either bank 1 or
    /// bank 2.
    ///
    /// # Safety
    ///
    /// The pins are not checked against the requirements for the SDRAM chip. So
    /// you may be able to initialise a SDRAM without enough pins to access the
    /// whole memory
    pub fn new_unchecked(
        fmc: FMC,
        bank: impl Into<SdramTargetBank>,
        _chip: IC,
    ) -> Self {
        // Select default bank mapping
        let target_bank = bank.into();
        let fmc_bank = match target_bank {
            SdramTargetBank::Bank1 => FmcBank::Bank5,
            SdramTargetBank::Bank2 => FmcBank::Bank6,
            _ => unimplemented!(),
        };

        Sdram {
            target_bank,
            fmc_bank,
            _chip: PhantomData,
            fmc,
            regs: FmcRegisters::new::<FMC>(),
        }
    }

    /// Initialise SDRAM instance. Delay is used to wait the SDRAM powerup
    /// delay
    ///
    /// Returns a raw pointer to the memory-mapped SDRAM block
    ///
    /// # Panics
    ///
    /// * Panics if any setting in `IC::CONFIG` cannot be achieved
    ///
    /// * Panics if the FMC source clock is too fast for
    /// maximum SD clock in `IC::TIMING`
    pub fn init<D>(&mut self, delay: &mut D) -> *mut u32
    where
        D: DelayUs<u8>,
    {
        use SdramCommand::*;

        // Select bank
        let bank = self.target_bank;

        // Calcuate SD clock
        let (sd_clock_hz, divide) = {
            let fmc_source_ck_hz = self.fmc.source_clock_hz();
            let sd_clock_wanted = IC::TIMING.max_sd_clock_hz;

            // Divider, round up. At least 2
            let divide: u32 = cmp::max(
                (fmc_source_ck_hz + sd_clock_wanted - 1) / sd_clock_wanted,
                2,
            );

            // Max 3
            assert!(divide <= 3,
                    "Source clock too fast for required SD_CLOCK. The maximum division ratio is 3");

            let sd_clock_hz = fmc_source_ck_hz / divide;
            (sd_clock_hz, divide)
        };

        fmc_trace!(
            "FMC clock {:?} (/{}, Max {:?})",
            sd_clock_hz,
            divide,
            IC::TIMING.max_sd_clock_hz
        );

        unsafe {
            // Enable memory controller AHB register access
            self.fmc.enable();

            // Program device features and timing
            self.set_features_timings(IC::CONFIG, IC::TIMING, divide);

            // Enable memory controller
            self.fmc.memory_controller_enable();

            // Step 1: Send a clock configuration enable command
            self.send_command(ClkEnable, bank);

            // Step 2: SDRAM powerup delay
            let startup_delay_us = (IC::TIMING.startup_delay_ns + 999) / 1000;
            delay.delay_us(startup_delay_us.try_into().unwrap());

            // Step 3: Send a PALL (precharge all) command
            self.send_command(Pall, bank);

            // Step 4: Send eight auto refresh commands
            self.send_command(Autorefresh(8), bank);

            // Step 5: Program the SDRAM's mode register
            self.send_command(LoadMode(IC::MODE_REGISTER), bank);

            // Step 6: Set the refresh rate counter
            // period (ns) * frequency (hz) / 10^9 = count
            let refresh_counter_top = ((IC::TIMING.refresh_period_ns as u64
                * sd_clock_hz as u64)
                / 1_000_000_000)
                - 20;
            assert!(
                refresh_counter_top >= 41 && refresh_counter_top < (1 << 13),
                "Impossible configuration for H7 FMC Controller"
            );

            modify_reg!(
                fmc,
                self.regs.global(),
                SDRTR,
                COUNT: refresh_counter_top as u32
            );
        }

        // Memory now initialised. Return base address
        self.fmc_bank.ptr()
    }

    /// Program memory device features and timings
    ///
    /// # Safety
    ///
    /// Some settings are common between both banks. Calling this function
    /// mutliple times with different banks and different configurations is
    /// unsafe.
    ///
    /// For example, see RM0433 rev 7 Section 22.9.3
    unsafe fn set_features_timings(
        &mut self,
        config: SdramConfiguration,
        timing: SdramTiming,
        sd_clock_divide: u32,
    ) {
        // Features ---- SDCR REGISTER

        // CAS latency 1 ~ 3 cycles
        assert!(
            config.cas_latency >= 1 && config.cas_latency <= 3,
            "Impossible configuration for FMC Controller"
        );

        // Row Bits: 11 ~ 13
        assert!(
            config.row_bits >= 11 && config.row_bits <= 13,
            "Impossible configuration for FMC Controller"
        );

        // Column bits: 8 ~ 11
        assert!(
            config.column_bits >= 8 && config.column_bits <= 11,
            "Impossible configuration for FMC Controller"
        );

        // Read Pipe Delay Cycles 0 ~ 2
        assert!(
            config.read_pipe_delay_cycles <= 2,
            "Impossible configuration for FMC Controller"
        );

        // Common settings written to SDCR1 only
        modify_reg!(fmc, self.regs.global(), SDCR1,
                    RPIPE: config.read_pipe_delay_cycles as u32,
                    RBURST: config.read_burst as u32,
                    SDCLK: sd_clock_divide);

        modify_reg_banked!(fmc, self.regs.global(),
                           self.target_bank, SDCR1, SDCR2,
                           // fields
                           WP: config.write_protection as u32,
                           CAS: config.cas_latency as u32,
                           NB:
                           match config.internal_banks {
                               2 => 0,
                               4 => 1,
                               _ => {
                                   panic!("Impossible configuration for FMC Controller")
                               }
                           },
                           MWID:
                           match config.memory_data_width {
                               8 => 0,
                               16 => 1,
                               32 => 2,
                               _ => {
                                   panic!("Impossible configuration for FMC Controller")
                               }
                           },
                           NR: config.row_bits as u32 - 11,
                           NC: config.column_bits as u32 - 8);

        // Timing ---- SDTR REGISTER

        // Self refresh >= ACTIVE to PRECHARGE
        let minimum_self_refresh = timing.active_to_precharge;

        // Write recovery - Self refresh
        let write_recovery_self_refresh =
            minimum_self_refresh - timing.row_to_column;
        // Write recovery - WRITE command to PRECHARGE command
        let write_recovery_row_cycle =
            timing.row_cycle - timing.row_to_column - timing.row_precharge;
        let write_recovery =
            cmp::max(write_recovery_self_refresh, write_recovery_row_cycle);

        // Common seting written to SDTR1 only
        modify_reg!(fmc, self.regs.global(), SDTR1,
                    TRC: timing.row_cycle - 1,
                    TRP: timing.row_precharge - 1
        );
        modify_reg_banked!(fmc, self.regs.global(),
                           self.target_bank, SDTR1, SDTR2,
                           // fields
                           TRCD: timing.row_to_column - 1,
                           TWR: write_recovery - 1,
                           TRAS: minimum_self_refresh - 1,
                           TXSR: timing.exit_self_refresh - 1,
                           TMRD: timing.mode_register_to_active - 1
        );
    }

    /// Send command to SDRAM
    unsafe fn send_command(
        &mut self,
        mode: SdramCommand,
        target: SdramTargetBank,
    ) {
        use SdramCommand::*;
        use SdramTargetBank::*;

        // Command
        let (cmd, number_refresh, mode_reg) = match mode {
            NormalMode => (0x00, 1, 0),
            ClkEnable => (0x01, 1, 0),
            Pall => (0x02, 1, 0),
            Autorefresh(a) => (0x03, a, 0), // Autorefresh
            LoadMode(mr) => (0x04, 1, mr),  // Mode register
            Selfrefresh => (0x05, 1, 0),
            Powerdown => (0x06, 1, 0),
        };
        // Bank for issuing command
        let (b1, b2) = match target {
            Bank1 => (1, 0),
            Bank2 => (0, 1),
            Both => (1, 1),
        };

        // Write to SDCMR
        write_reg!(
            fmc,
            self.regs.global(),
            SDCMR,
            MRD: mode_reg as u32,
            NRFS: number_refresh as u32,
            CTB1: b1,
            CTB2: b2,
            MODE: cmd
        );
    }
}