1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
use core::mem::swap;

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use self::heap_helpers::StaticHeapHole;
pub use self::heap_helpers::StaticHeapPeekMut;
pub use self::heap_iterators::{StaticHeapDrainSorted, StaticHeapIntoIterSorted};
use crate::iterators::{StaticVecDrain, StaticVecIterConst, StaticVecIterMut};
use crate::StaticVec;

mod heap_helpers;
mod heap_iterators;
mod heap_trait_impls;

/// A priority queue implemented as a binary heap, built around an instance of `StaticVec<T, N>`.
///
/// `StaticHeap`, as well as the associated iterator and helper structs for it are direct
/// adaptations of the ones found in the `std::collections::binary_heap` module (including
/// most of the documentation, at least for the functions that exist in both implementations).
///
/// It is a logic error for an item to be modified in such a way that the
/// item's ordering relative to any other item, as determined by the `Ord`
/// trait, changes while it is in the heap. This is normally only possible
/// through `Cell`, `RefCell`, global state, I/O, or unsafe code.
///
/// # Examples
///
/// ```
/// use staticvec::StaticHeap;
///
/// let mut heap = StaticHeap::<i32, 4>::new();
///
/// // We can use peek to look at the next item in the heap. In this case,
/// // there's no items in there yet so we get None.
/// assert_eq!(heap.peek(), None);
///
/// // Let's add some scores...
/// heap.push(1);
/// heap.push(5);
/// heap.push(2);
///
/// // Now peek shows the most important item in the heap.
/// assert_eq!(heap.peek(), Some(&5));
///
/// // We can check the length of a heap.
/// assert_eq!(heap.len(), 3);
///
/// // We can iterate over the items in the heap, although they are returned in
/// // a random order.
/// for x in &heap {
///   println!("{}", x);
/// }
///
/// // If we instead pop these scores, they should come back in order.
/// assert_eq!(heap.pop(), Some(5));
/// assert_eq!(heap.pop(), Some(2));
/// assert_eq!(heap.pop(), Some(1));
/// assert_eq!(heap.pop(), None);
///
/// // We can clear the heap of any remaining items.
/// heap.clear();
///
/// // The heap should now be empty.
/// assert!(heap.is_empty())
/// ```
///
/// ## Min-heap
///
/// Either `core::cmp::Reverse` or a custom `Ord` implementation can be used to
/// make `StaticHeap` a min-heap. This makes `heap.pop()` return the smallest
/// value instead of the greatest one.
///
/// ```
/// use staticvec::StaticHeap;
/// use core::cmp::Reverse;
///
/// // Wrap the values in `Reverse`.
/// let mut heap = StaticHeap::from([Reverse(1), Reverse(5), Reverse(2)]);
///
/// // If we pop these scores now, they should come back in the reverse order.
/// assert_eq!(heap.pop(), Some(Reverse(1)));
/// assert_eq!(heap.pop(), Some(Reverse(2)));
/// assert_eq!(heap.pop(), Some(Reverse(5)));
/// assert_eq!(heap.pop(), None);
/// ```
///
/// # Time complexity
///
/// | [push] | [pop]    | [peek]/[peek\_mut] |
/// |--------|----------|--------------------|
/// | O(1)~  | O(log n) | O(1)               |
///
/// The value for `push` is an expected cost; the method documentation gives a
/// more detailed analysis.
///
/// [push]: #method.push
/// [pop]: #method.pop
/// [peek]: #method.peek
/// [peek\_mut]: #method.peek_mut
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
pub struct StaticHeap<T, const N: usize> {
  pub(crate) data: StaticVec<T, N>,
}

impl<T: Ord, const N: usize> StaticHeap<T, N> {
  /// Creates an empty StaticHeap as a max-heap.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::StaticHeap;
  /// let mut heap = StaticHeap::<i32, 2>::new();
  /// heap.push(4);
  /// ```
  #[inline(always)]
  pub const fn new() -> StaticHeap<T, N> {
    StaticHeap {
      data: StaticVec::new(),
    }
  }

  /// Returns a mutable reference to the greatest item in the StaticHeap, or
  /// `None` if it is empty.
  ///
  /// Note: If the `StaticHeapPeekMut` value is leaked, the heap may be in an
  /// inconsistent state.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::StaticHeap;
  /// let mut heap = StaticHeap::<i32, 4>::new();
  /// assert!(heap.peek_mut().is_none());
  /// heap.push(1);
  /// heap.push(5);
  /// heap.push(2);
  /// {
  ///   let mut val = heap.peek_mut().unwrap();
  ///   *val = 0;
  /// }
  /// assert_eq!(heap.peek(), Some(&2));
  /// ```
  ///
  /// # Time complexity
  ///
  /// Cost is O(1) in the worst case.
  #[inline(always)]
  pub const fn peek_mut(&mut self) -> Option<StaticHeapPeekMut<'_, T, N>> {
    if self.is_empty() {
      None
    } else {
      Some(StaticHeapPeekMut {
        heap: self,
        sift: true,
      })
    }
  }

  /// Pops a value from the end of the StaticHeap and returns it directly without asserting that
  /// the StaticHeap's current length is greater than 0.
  ///
  /// # Safety
  ///
  /// It is up to the caller to ensure that the StaticHeap contains at least one
  /// element prior to using this function. Failure to do so will result in reading
  /// from uninitialized memory.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::from([1, 3]);
  /// unsafe {
  ///   assert_eq!(heap.pop_unchecked(), 3);
  ///   assert_eq!(heap.pop_unchecked(), 1);
  /// }
  /// ```
  ///
  /// # Time complexity
  ///
  /// The worst case cost of `pop_unchecked` on a heap containing *n* elements is O(log n).
  #[inline(always)]
  pub unsafe fn pop_unchecked(&mut self) -> T {
    let mut res = self.data.pop_unchecked();
    if self.is_not_empty() {
      swap(&mut res, self.data.get_unchecked_mut(0));
      self.sift_down_to_bottom(0);
    }
    res
  }

  /// Removes the greatest item from the StaticHeap and returns it, or `None` if it
  /// is empty.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::from([1, 3]);
  /// assert_eq!(heap.pop(), Some(3));
  /// assert_eq!(heap.pop(), Some(1));
  /// assert_eq!(heap.pop(), None);
  /// ```
  ///
  /// # Time complexity
  ///
  /// The worst case cost of `pop` on a heap containing *n* elements is O(log n).
  #[inline(always)]
  pub fn pop(&mut self) -> Option<T> {
    if self.is_empty() {
      None
    } else {
      Some(unsafe { self.pop_unchecked() })
    }
  }

  /// Pushes a value onto the StaticHeap without asserting that
  /// its current length is less than `self.capacity()`.
  ///
  /// # Safety
  ///
  /// It is up to the caller to ensure that the length of the StaticHeap
  /// prior to using this function is less than `self.capacity()`.
  /// Failure to do so will result in writing to an out-of-bounds memory region.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::StaticHeap;
  /// let mut heap = StaticHeap::<i32, 3>::new();
  /// unsafe {
  ///   heap.push_unchecked(3);
  ///   heap.push_unchecked(5);
  ///   heap.push_unchecked(1);
  /// }
  /// assert_eq!(heap.len(), 3);
  /// assert_eq!(heap.peek(), Some(&5));
  /// ```
  ///
  /// # Time complexity
  ///
  /// The expected cost of `push_unchecked`, averaged over every possible ordering of
  /// the elements being pushed, and over a sufficiently large number of
  /// pushes, is O(1). This is the most meaningful cost metric when pushing
  /// elements that are *not* already in any sorted pattern.
  ///
  /// The time complexity degrades if elements are pushed in predominantly
  /// ascending order. In the worst case, elements are pushed in ascending
  /// sorted order and the amortized cost per push is O(log n) against a heap
  /// containing *n* elements.
  ///
  /// The worst case cost of a *single* call to `push_unchecked` is O(n).
  #[inline(always)]
  pub unsafe fn push_unchecked(&mut self, item: T) {
    let old_length = self.len();
    self.data.push_unchecked(item);
    self.sift_up(0, old_length);
  }

  /// Pushes an item onto the StaticHeap, panicking if the underlying StaticVec
  /// instance is already at maximum capacity.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::StaticHeap;
  /// let mut heap = StaticHeap::<i32, 5>::new();
  /// heap.push(3);
  /// heap.push(5);
  /// heap.push(1);
  /// assert_eq!(heap.len(), 3);
  /// assert_eq!(heap.peek(), Some(&5));
  /// ```
  ///
  /// # Time complexity
  ///
  /// The expected cost of `push`, averaged over every possible ordering of
  /// the elements being pushed, and over a sufficiently large number of
  /// pushes, is O(1). This is the most meaningful cost metric when pushing
  /// elements that are *not* already in any sorted pattern.
  ///
  /// The time complexity degrades if elements are pushed in predominantly
  /// ascending order. In the worst case, elements are pushed in ascending
  /// sorted order and the amortized cost per push is O(log n) against a heap
  /// containing *n* elements.
  ///
  /// The worst case cost of a *single* call to `push` is O(n).
  #[inline(always)]
  pub fn push(&mut self, item: T) {
    // Deferring to our own `push_unchecked` which defers to `StaticVec::push_unchecked`
    // is slower here than just calling `StaticVec::push` which calls `StaticVec::push_unchecked`
    // anyways.
    let old_length = self.len();
    self.data.push(item);
    self.sift_up(0, old_length);
  }

  /// Consumes the StaticHeap and returns a StaticVec in sorted (ascending) order.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::<i32, 8>::from([1, 2, 4, 5, 7]);
  /// heap.push(6);
  /// heap.push(3);
  /// let vec = heap.into_sorted_staticvec();
  /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
  /// ```
  #[inline]
  pub fn into_sorted_staticvec(mut self) -> StaticVec<T, N> {
    let mut end = self.len();
    while end > 1 {
      end -= 1;
      self.data.swap(0, end);
      self.sift_down_range(0, end);
    }
    self.into_staticvec()
  }

  // The implementations of sift_up and sift_down use unsafe blocks in
  // order to move an element out of the vector (leaving behind a
  // hole), shift along the others and move the removed element back into the
  // vector at the final location of the hole.
  // The `StaticHeapHole` type is used to represent this, and make sure
  // the hole is filled back at the end of its scope, even on panic.
  // Using a hole reduces the constant factor compared to using swaps,
  // which involves twice as many moves.
  #[inline]
  fn sift_up(&mut self, start: usize, position: usize) {
    unsafe {
      // Take out the value at `position` and create a hole.
      let mut hole = StaticHeapHole::new(&mut self.data, position);
      while hole.pos() > start {
        let parent = (hole.pos() - 1) / 2;
        if hole.elt() <= hole.get(parent) {
          break;
        }
        hole.move_to(parent);
      }
    }
  }

  /// Takes an element from `position` and moves it down the heap,
  /// while its children are larger.
  #[inline]
  fn sift_down_range(&mut self, position: usize, end: usize) {
    unsafe {
      let mut hole = StaticHeapHole::new(&mut self.data, position);
      let mut child = 2 * position + 1;
      while child < end {
        let right = child + 1;
        // compare with the greater of the two children
        if right < end && hole.get(child) <= hole.get(right) {
          child = right;
        }
        // if we are already in order, stop.
        if hole.elt() >= hole.get(child) {
          break;
        }
        hole.move_to(child);
        child = 2 * hole.pos() + 1;
      }
    }
  }

  /// Takes an element from `position` and moves it all the way down the heap,
  /// then sifts it up to its position.
  ///
  /// Note: This is faster when the element is known to be large / should
  /// be closer to the bottom.
  #[inline]
  fn sift_down_to_bottom(&mut self, mut position: usize) {
    let end = self.len();
    let start = position;
    unsafe {
      let mut hole = StaticHeapHole::new(&mut self.data, position);
      let mut child = 2 * position + 1;
      while child < end {
        let right = child + 1;
        // compare with the greater of the two children
        if right < end && hole.get(child) <= hole.get(right) {
          child = right;
        }
        hole.move_to(child);
        child = 2 * hole.pos() + 1;
      }
      position = hole.position;
    }
    self.sift_up(start, position);
  }

  #[inline(always)]
  fn rebuild(&mut self) {
    let mut n = self.len() / 2;
    while n > 0 {
      n -= 1;
      self.sift_down_range(n, self.len());
    }
  }

  /// Appends `self.remaining_capacity()` (or as many as available) items from `other` to `self`.
  /// The appended items (if any) will no longer exist in `other` afterwards (which is to say,
  /// `other` will be left empty.)
  ///
  /// The `N2` parameter does not need to be provided explicitly, and can be inferred directly from
  /// the constant `N2` constraint of `other` (which may or may not be the same as the `N`
  /// constraint of `self`.)
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// // We give the two heaps arbitrary capacities for the sake of the example.
  /// let mut a = StaticHeap::<i32, 9>::from([-10, 1, 2, 3, 3]);
  /// let mut b = StaticHeap::<i32, 18>::from([-20, 5, 43]);
  /// a.append(&mut b);
  /// assert_eq!(a.into_sorted_staticvec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
  /// assert!(b.is_empty());
  /// ```
  #[inline(always)]
  pub fn append<const N2: usize>(&mut self, other: &mut StaticHeap<T, N2>) {
    if other.is_empty() {
      return;
    }
    self.data.append(&mut other.data);
    self.rebuild();
  }

  /// Returns an iterator which retrieves elements in heap order.
  /// The retrieved elements are removed from the original heap.
  /// The remaining elements will be removed on drop in heap order.
  ///
  /// Note:
  /// * `drain_sorted()` is O(n log n); much slower than `drain()`. You should use the latter for
  ///   most cases.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::from([1, 2, 3, 4, 5]);
  /// assert_eq!(heap.len(), 5);
  /// drop(heap.drain_sorted()); // removes all elements in heap order
  /// assert_eq!(heap.len(), 0);
  /// ```
  #[inline(always)]
  pub const fn drain_sorted(&mut self) -> StaticHeapDrainSorted<'_, T, N> {
    StaticHeapDrainSorted { inner: self }
  }
}

impl<T, const N: usize> StaticHeap<T, N> {
  /// Returns an iterator visiting all values in the StaticHeap's underlying StaticVec, in
  /// arbitrary order.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let heap = StaticHeap::from(staticvec![1, 2, 3, 4]);
  /// // Print 1, 2, 3, 4 in arbitrary order
  /// for x in heap.iter() {
  ///   println!("{}", x);
  /// }
  /// ```
  #[inline(always)]
  pub const fn iter(&self) -> StaticVecIterConst<'_, T, N> {
    self.data.iter()
  }

  /// Returns a mutable iterator visiting all values in the StaticHeap's underlying StaticVec, in
  /// arbitrary order.
  ///
  /// **Note:** Mutating the elements in a StaticHeap may cause it to become unbalanced.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::from([1, 2, 3, 4]);
  /// for i in heap.iter_mut() {
  ///   *i *= 2;
  /// }
  /// // Prints "[2, 4, 6, 8]", but in arbitrary order
  /// println!("{:?}", heap);
  /// ```
  #[inline(always)]
  pub const fn iter_mut(&mut self) -> StaticVecIterMut<'_, T, N> {
    self.data.iter_mut()
  }

  /// Returns an iterator which retrieves elements in heap order.
  /// This method consumes the original StaticHeap.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let heap = StaticHeap::from([1, 2, 3, 4, 5]);
  /// assert_eq!(
  ///   heap.into_iter_sorted().take(2).collect::<StaticVec<_, 3>>(), staticvec![5, 4]
  /// );
  /// ```
  #[inline(always)]
  pub const fn into_iter_sorted(self) -> StaticHeapIntoIterSorted<T, N> {
    StaticHeapIntoIterSorted { inner: self }
  }

  /// Returns the greatest item in the StaticHeap, or `None` if it is empty.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::<i32, 7>::new();
  /// assert_eq!(heap.peek(), None);
  /// heap.push(1);
  /// heap.push(5);
  /// heap.push(2);
  /// assert_eq!(heap.peek(), Some(&5));
  /// ```
  ///
  /// # Time complexity
  ///
  /// Cost is O(1) in the worst case.
  #[inline(always)]
  pub fn peek(&self) -> Option<&T> {
    self.data.get(0)
  }

  /// Returns the maximum number of elements the StaticHeap can hold.
  /// This is always equivalent to its constant generic `N` parameter.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::<i32, 100>::new();
  /// assert!(heap.capacity() >= 100);
  /// heap.push(4);
  /// ```
  #[inline(always)]
  pub const fn capacity(&self) -> usize {
    self.data.capacity()
  }

  /// Returns the remaining capacity (which is to say, `self.capacity() - self.len()`) of the
  /// StaticHeap.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::<i32, 100>::new();
  /// heap.push(1);
  /// assert_eq!(heap.remaining_capacity(), 99);
  /// ```
  #[inline(always)]
  pub const fn remaining_capacity(&self) -> usize {
    self.data.remaining_capacity()
  }

  /// Returns the total size of the inhabited part of the StaticHeap (which may be zero if it has a
  /// length of zero or contains ZSTs) in bytes. Specifically, the return value of this function
  /// amounts to a calculation of `size_of::<T>() * self.length`.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let x = StaticHeap::<u8, 8>::from([1, 2, 3, 4, 5, 6, 7, 8]);
  /// assert_eq!(x.size_in_bytes(), 8);
  /// let y = StaticHeap::<u16, 8>::from([1, 2, 3, 4, 5, 6, 7, 8]);
  /// assert_eq!(y.size_in_bytes(), 16);
  /// let z = StaticHeap::<u32, 8>::from([1, 2, 3, 4, 5, 6, 7, 8]);
  /// assert_eq!(z.size_in_bytes(), 32);
  /// let w = StaticHeap::<u64, 8>::from([1, 2, 3, 4, 5, 6, 7, 8]);
  /// assert_eq!(w.size_in_bytes(), 64);
  /// ```
  #[inline(always)]
  pub const fn size_in_bytes(&self) -> usize {
    self.data.size_in_bytes()
  }

  /// Consumes the StaticHeap and returns the underlying StaticVec
  /// in arbitrary order.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let heap = StaticHeap::from(staticvec![1, 2, 3, 4, 5, 6, 7]);
  /// let vec = heap.into_staticvec();
  /// // Will print in some order
  /// for x in &vec {
  ///   println!("{}", x);
  /// }
  /// ```
  #[inline(always)]
  pub fn into_staticvec(self) -> StaticVec<T, N> {
    self.data
  }

  /// Returns the length of the StaticHeap.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let heap = StaticHeap::from(staticvec![1, 3]);
  /// assert_eq!(heap.len(), 2);
  /// ```
  #[inline(always)]
  pub const fn len(&self) -> usize {
    self.data.len()
  }

  /// Returns true if the current length of the StaticHeap is 0.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::<i32, 28>::new();
  /// assert!(heap.is_empty());
  /// ```
  #[inline(always)]
  pub const fn is_empty(&self) -> bool {
    self.len() == 0
  }

  /// Returns true if the current length of the StaticHeap is greater than 0.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::<i32, 2>::new();
  /// heap.push(1);
  /// assert!(heap.is_not_empty());
  /// ```
  // Clippy wants `!is_empty()` for this, but I prefer it as-is. My question is though, does it
  // actually know that we have an applicable `is_empty()` function, or is it just guessing? I'm not
  // sure.
  #[allow(clippy::len_zero)]
  #[inline(always)]
  pub const fn is_not_empty(&self) -> bool {
    self.len() > 0
  }

  /// Returns true if the current length of the StaticHeap is equal to its capacity.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::<i32, 4>::new();
  /// heap.push(3);
  /// heap.push(5);
  /// heap.push(1);
  /// heap.push(2);
  /// assert!(heap.is_full());
  /// ```
  #[inline(always)]
  pub const fn is_full(&self) -> bool {
    self.len() == N
  }

  /// Returns true if the current length of the StaticHeap is less than its capacity.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::<i32, 4>::new();
  /// heap.push(3);
  /// heap.push(5);
  /// heap.push(1);
  /// assert!(heap.is_not_full());
  /// ```
  #[inline(always)]
  pub const fn is_not_full(&self) -> bool {
    self.len() < N
  }

  /// Clears the StaticHeap, returning an iterator over the removed elements.
  ///
  /// The elements are removed in arbitrary order.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::from(staticvec![1, 3]);
  /// assert!(heap.is_not_empty());
  /// for x in heap.drain() {
  ///   println!("{}", x);
  /// }
  /// assert!(heap.is_empty());
  /// ```
  #[inline(always)]
  pub fn drain(&mut self) -> StaticVecDrain<'_, T, N> {
    self.data.drain_iter(..)
  }

  /// Drops all items from the StaticHeap.
  ///
  /// # Examples
  ///
  /// Basic usage:
  /// ```
  /// # use staticvec::*;
  /// let mut heap = StaticHeap::from(staticvec![1, 3]);
  /// assert!(heap.is_not_empty());
  /// heap.clear();
  /// assert!(heap.is_empty());
  /// ```
  #[inline(always)]
  pub fn clear(&mut self) {
    self.data.clear();
  }
}