1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
// lib.rs
//
// Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough
// Copyright (C) 2016 G.vd.Schoot
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//

pub mod types;
use types::F64;

// mean

// mean calculates the arithmetic mean with the recurrence relation
pub fn mean<T: F64>(data: &[T]) -> f64 {
    let mut mean = 0.0;
    for (i, val) in data.iter().enumerate() {
        mean += (val.f64() - mean) / (i + 1) as f64;
    }
    mean
}

// absdev

pub fn absdev<T: F64>(data: &[T]) -> f64 {
    absdev_mean(data, mean(data))
}

// absdev_mean finds the absolute deviation of the data interface
pub fn absdev_mean<T: F64>(data: &[T], mean: f64) -> f64 {
    let mut sum = 0.0;
    // the sum of the absolute deviations
    for val in data {
        sum += (val.f64() - mean).abs();
    }
    sum / data.len() as f64
}

// covariance

// takes a dataset and calculates the covariance
fn covariance_nonpub<T: F64>(data1: &[T], data2: &[T], mean1: f64, mean2: f64) -> f64 {
    let mut res = 0.0;
    // calculate the sum of the squares
    for i in 0..data1.len() {
        let delta1 = data1[i].f64() - mean1;
        let delta2 = data2[i].f64() - mean2;
        res += (delta1 * delta2 - res) / (i + 1) as f64;
    }
    res
}

pub fn covariance_mean<T: F64>(data1: &[T], data2: &[T], mean1: f64, mean2: f64) -> f64 {
    let n = data1.len();
    let covariance = covariance_nonpub(data1, data2, mean1, mean2);
    covariance * (n as f64) / (n - 1) as f64
}

pub fn covariance<T: F64>(data1: &[T], data2: &[T]) -> f64 {
    let mean1 = mean(data1);
    let mean2 = mean(data2);
    covariance_mean(data1, data2, mean1, mean2)
}

// correlation()
// Calculate Pearson correlation = cov(X, Y) / (sigma_X * sigma_Y)
// This routine efficiently computes the correlation in one pass of the
// data and makes use of the algorithm described in:
//
// B. P. Welford, "Note on a Method for Calculating Corrected Sums of
// Squares and Products", Technometrics, Vol 4, No 3, 1962.
//
// This paper derives a numerically stable recurrence to compute a sum
// of products
//
// S = sum_{i=1..N} [ (x_i - mu_x) * (y_i - mu_y) ]
//
// with the relation
//
// S_n = S_{n-1} + ((n-1)/n) * (x_n - mu_x_{n-1}) * (y_n - mu_y_{n-1})
//
pub fn correlation<T: F64>(data1: &[T], data2: &[T]) -> f64 {
    let mut sum_xsq = 0.0;
    let mut sum_ysq = 0.0;
    let mut sum_cross = 0.0;

    // Compute:
    // sum_xsq = Sum [ (x_i - mu_x)^2 ],
    // sum_ysq = Sum [ (y_i - mu_y)^2 ] and
    // sum_cross = Sum [ (x_i - mu_x) * (y_i - mu_y) ]
    // using the above relation from Welford's paper

    let mut mean_x = data1[0].f64();
    let mut mean_y = data2[0].f64();

    for i in 1..data1.len() {
        let ratio = i as f64 / (i + 1) as f64;
        let delta_x = data1[i].f64() - mean_x;
        let delta_y = data2[i].f64() - mean_y;
        sum_xsq += delta_x * delta_x * ratio;
        sum_ysq += delta_y * delta_y * ratio;
        sum_cross += delta_x * delta_y * ratio;
        mean_x += delta_x / (i + 1) as f64;
        mean_y += delta_y / (i + 1) as f64;
    }

    sum_cross / (sum_xsq.sqrt() * sum_ysq.sqrt())
}

// kurtosis

pub fn kurtosis<T: F64>(data: &[T]) -> f64 {
    let mean = mean(data);
    let est_sd = sd_mean(data, mean);
    kurtosis_main_sd(data, mean, est_sd)
}

pub fn kurtosis_main_sd<T: F64>(data: &[T], mean: f64, sd: f64) -> f64 {
    let mut avg = 0.0;

    // calculate the fourth moment the deviations, normalized by the sd
    //
    // we use a recurrence relation to stable update a running value so
    // there aren't any large sums that can overflow

    for i in 0..data.len() {
        let x = (data[i].f64() - mean) / sd;
        avg += (x * x * x * x - avg) / (i + 1) as f64;
    }
    avg - 3.0 // makes kurtosis zero for a Gaussian
}

// lag-1

pub fn lag1autocorrelation<T: F64>(data: &[T]) -> f64 {
    let mean = mean(data);
    return lag1autocorrelation_mean(data, mean);
}

pub fn lag1autocorrelation_mean<T: F64>(data: &[T], mean: f64) -> f64 {
    let mut q = 0.0;
    let mut v = (data[0].f64() - mean) * (data[0].f64() - mean);

    for i in 1..data.len() {
        let delta0 = data[i - 1].f64() - mean;
        let delta1 = data[i].f64() - mean;
        q += (delta0 * delta1 - q) / (i + 1) as f64;
        v += (delta1 * delta1 - v) / (i + 1) as f64;
    }
    q / v // r1
}

// median

// MedianFromSortedData calculates the median of the sorted data.
// Note that the function doesn't check wheather the data is actually sorted.
pub fn median_from_sorted_data<T: F64>(sorted_data: &[T]) -> f64 {
    let len = sorted_data.len();
    let lhs = (len - 1) / 2;
    let rhs = len / 2;

    if len == 0 {
        return 0.0;
    }

    if lhs == rhs {
        sorted_data[lhs].f64()
    } else {
        (sorted_data[lhs].f64() + sorted_data[rhs].f64()) / 2.0
    }
}

// minmax

// Max finds the first largest member and the members position within the data
pub fn max<T: F64>(data: &[T]) -> (f64, usize) {
    let mut max = data[0].f64();
    let mut max_index = 0;

    for (i, val) in data.iter().enumerate() {
        let xi = val.f64();

        if xi > max {
            max = xi;
            max_index = i;
        }

        if xi.is_nan() {
            max = xi;
            max_index = i;
            return (max, max_index);
        }
    }
    (max, max_index)
}

// Min finds the first smallest member and the members position within the data
pub fn min<T: F64>(data: &[T]) -> (f64, usize) {
    let mut min = data[0].f64();
    let mut min_index = 0;

    for (i, val) in data.iter().enumerate() {
        let xi = val.f64();

        if xi < min {
            min = xi;
            min_index = i;
        }

        if xi.is_nan() {
            min = xi;
            min_index = i;
            return (min, min_index);
        }
    }
    (min, min_index)
}

// Minmax finds the first smallest and largest members and
// the members positions within the data
pub fn minmax<T: F64>(data: &[T]) -> (f64, u32, f64, u32) {
    let mut min_index: u32 = 0;
    let mut max_index: u32 = 0;
    let mut min = data[0].f64();
    let mut max = data[0].f64();

    for i in 0..data.len() {
        let xi = data[i].f64();

        if xi < min {
            min = xi;
            min_index = i as u32;
        }

        if xi > max {
            max = xi;
            max_index = i as u32;
        }

        if xi.is_nan() {
            min = xi;
            max = xi;
            min_index = i as u32;
            max_index = i as u32;
            break;
        }
    }
    (min, min_index, max, max_index)
}

// pvariance

// p_variance finds the pooled variance of two datasets
pub fn p_variance<T: F64>(data1: &[T], data2: &[T]) -> f64 {
    let n1 = data1.len();
    let n2 = data2.len();

    let var1 = variance(data1);
    let var2 = variance(data2);

    (((n1 - 1) as f64 * var1) + ((n2 - 1) as f64 * var2)) / (n1 + n2 - 2) as f64
}

// quantiles

// QuantileFromSortedData performs the quantile function, also called percent
// point function or inverse cumulative distribution function, on the sorted data.
// Note that the function doesn't check wheather the data is actually sorted.
pub fn quantile_from_sorted_data<T: F64>(sorted_data: &[T], f: f64) -> f64 {
    let n = sorted_data.len() as i32;
    let index = f * (n - 1) as f64;
    let lhs = index as i32;
    let delta = index - (lhs as f64);

    if n == 0 {
        return 0.0;
    }

    if lhs == n - 1 {
        return sorted_data[lhs as usize].f64();
    } else {
        return (1.0 - delta) * sorted_data[lhs as usize].f64() +
               delta * sorted_data[lhs as usize + 1].f64();
    }
}

// skew

pub fn skew<T: F64>(data: &[T]) -> f64 {
    let mean = mean(data);
    let sd = sd_mean(data, mean);
    skew_mean_sd(data, mean, sd)
}

// Skew_mean_sd calculates the skewness of a dataset
pub fn skew_mean_sd<T: F64>(data: &[T], mean: f64, sd: f64) -> f64 {
    let mut skew = 0.0;
    for (i, val) in data.iter().enumerate() {
        let x = (val.f64() - mean) / sd;
        skew += (x * x * x - skew) / (i + 1) as f64;
    }
    skew
}

// ttest

// runs a t-test between two datasets representing independent
// samples. Tests to see if the difference between means of the
// samples is different from zero.
pub fn t_test<T: F64>(data1: &[T], data2: &[T]) -> f64 {
    let n1 = data1.len() as f64;
    let n2 = data2.len() as f64;

    let mean1 = mean(data1);
    let mean2 = mean(data2);

    let pv = p_variance(data1, data2);

    (mean1 - mean2) / (pv * ((1.0 / n1) + (1.0 / n2))).sqrt()
}

// variance

fn _variance<T: F64>(data: &[T], mean: f64) -> f64 {
    let mut variance = 0.0;

    // calculate the sum of the squares
    for (i, val) in data.iter().enumerate() {
        let delta = val.f64() - mean;
        // TODO: long double for variance... How to implement in Rust?
        variance += ((delta * delta) - variance) / (i + 1) as f64;
    }
    variance
}

pub fn variance_with_fixed_mean<T: F64>(data: &[T], mean: f64) -> f64 {
    _variance(data, mean)
}

pub fn sd_with_fixed_mean<T: F64>(data: &[T], mean: f64) -> f64 {
    _variance(data, mean).sqrt()
}

pub fn variance_mean<T: F64>(data: &[T], mean: f64) -> f64 {
    let variance = _variance(data, mean);
    variance * (data.len() as f64) / (data.len() - 1) as f64
}

pub fn sd_mean<T: F64>(data: &[T], mean: f64) -> f64 {
    let variance = _variance(data, mean);
    (variance * (data.len() as f64) / (data.len() - 1) as f64).sqrt()
}

pub fn variance<T: F64>(data: &[T]) -> f64 {
    let mean = mean(data);
    variance_mean(data, mean)
}

pub fn sd<T: F64>(data: &[T]) -> f64 {
    let mean = mean(data);
    return sd_mean(data, mean);
}

// tss_mean takes a dataset and finds the sum of squares about the mean
pub fn tss_mean<T: F64>(data: &[T], mean: f64) -> f64 {
    let mut res = 0.0;

    // find the sum of the squares
    for val in data {
        let delta = val.f64() - mean;
        res += delta * delta;
    }
    res
}

pub fn tss<T: F64>(data: &[T]) -> f64 {
    let mean = mean(data);
    return tss_mean(data, mean);
}

// wabsdev

pub fn w_absdev<T: F64>(w: &[T], data: &[T]) -> f64 {
    let wmean = w_mean(w, data);
    w_absdev_mean(w, data, wmean)
}

// WAbsdev_mean calculates the weighted absolute deviation of a dataset
pub fn w_absdev_mean<T: F64>(w: &[T], data: &[T], wmean: f64) -> f64 {
    let mut wabsdev = 0.0;
    let mut weight = 0.0;

    // calculate the sum of the absolute deviations
    for i in 0..data.len() {
        let wi = w[i].f64();

        if wi > 0.0 {
            let delta = (data[i].f64() - wmean).abs();
            weight += wi;
            wabsdev += (delta - wabsdev) * (wi / weight);
        }
    }
    wabsdev
}

// wkurtosis

pub fn w_kurtosis<T: F64>(w: &[T], data: &[T]) -> f64 {
    let wmean = w_mean(w, data);
    let wsd = w_sd_mean(w, data, wmean);
    w_kurtosis_mean_sd(w, data, wmean, wsd)
}

// w_kurtosis_mean calculates the kurtosis of a dataset
pub fn w_kurtosis_mean_sd<T: F64>(w: &[T], data: &[T], wmean: f64, wsd: f64) -> f64 {
    let mut wavg = 0.0;
    let mut weight = 0.0;

    for (i, val) in data.iter().enumerate() {
        let wi = w[i].f64();

        if wi > 0.0 {
            let x = (val.f64() - wmean) / wsd;
            weight += wi;
            wavg += (x * x * x * x - wavg) * (wi / weight);
        }
    }
    wavg - 3.0 // makes kurtosis zero for a Gaussian
}

// wmean

// w_mean calculates the weighted arithmetic mean of a dataset
pub fn w_mean<T: F64>(w: &[T], data: &[T]) -> f64 {
    let mut wmean = 0.0;
    let mut weight = 0.0;

    for (i, val) in data.iter().enumerate() {
        let wi = w[i].f64();

        if wi > 0.0 {
            weight += wi;
            wmean += (val.f64() - wmean) * (wi / weight);
        }
    }
    wmean
}

// wskew

pub fn w_skew<T: F64>(w: &[T], data: &[T]) -> f64 {
    let wmean = w_mean(w, data);
    let wsd = w_sd_mean(w, data, wmean);
    return w_skew_mean_sd(w, data, wmean, wsd);
}

// Compute the weighted skewness of a dataset
pub fn w_skew_mean_sd<T: F64>(w: &[T], data: &[T], wmean: f64, wsd: f64) -> f64 {
    let mut wskew = 0.0;
    let mut weight = 0.0;

    for (i, val) in data.iter().enumerate() {
        let wi = w[i].f64();

        if wi > 0.0 {
            let x = (val.f64() - wmean) / wsd;
            weight += wi;
            wskew += (x * x * x - wskew) * (wi / weight);
        }
    }
    wskew
}

// wvariance

fn wvariance<T: F64>(w: &[T], data: &[T], wmean: f64) -> f64 {
    let mut weight = 0.0;
    let mut wvariance = 0.0;

    // the sum of the squares
    for (i, val) in w.iter().enumerate() {
        let wi = val.f64();
        if wi > 0.0 {
            let delta = data[i].f64() - wmean;
            weight += wi;
            wvariance += (delta * delta - wvariance) * (wi / weight);
        }
    }
    wvariance
}

fn factor<T: F64>(w: &[T]) -> f64 {
    let mut a = 0.0;
    let mut b = 0.0;

    // the sum of the squares
    for val in w {
        let wi = val.f64();
        if wi > 0.0 {
            a += wi;
            b += wi * wi;
        }
    }
    (a * a) / ((a * a) - b)
}

pub fn w_variance_with_fixed_mean<T: F64>(w: &[T], data: &[T], wmean: f64) -> f64 {
    wvariance(w, data, wmean)
}

pub fn wsd_with_fixed_mean<T: F64>(w: &[T], data: &[T], wmean: f64) -> f64 {
    let wvariance = wvariance(w, data, wmean);
    wvariance.sqrt()
}

pub fn w_variance_mean<T: F64>(w: &[T], data: &[T], wmean: f64) -> f64 {
    let variance = wvariance(w, data, wmean);
    let scale = factor(w);

    scale * variance
}

pub fn w_sd_mean<T: F64>(w: &[T], data: &[T], wmean: f64) -> f64 {
    let variance = wvariance(w, data, wmean);
    let scale = factor(w);
    (scale * variance).sqrt()
}

pub fn w_sd<T: F64>(w: &[T], data: &[T]) -> f64 {
    let wmean = w_mean(w, data);
    w_sd_mean(w, data, wmean)
}

pub fn w_variance<T: F64>(w: &[T], data: &[T]) -> f64 {
    let wmean = w_mean(w, data);
    w_variance_mean(w, data, wmean)
}

// w_tss_mean takes a dataset and finds the weighted sum of squares about wmean
pub fn w_tss_mean<T: F64>(w: &[T], data: &[T], wmean: f64) -> f64 {
    let mut res = 0.0;

    // find the sum of the squares
    for (i, val) in data.iter().enumerate() {
        let wi = w[i].f64();
        if wi > 0.0 {
            let delta = val.f64() - wmean;
            res += wi * delta * delta;
        }
    }
    res
}

pub fn w_tss<T: F64>(w: &[T], data: &[T]) -> f64 {
    let wmean = w_mean(w, data);
    return w_tss_mean(w, data, wmean);
}