1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
//! Macros
//!
//! Note that macros have been designed so that there is some
//! punctuation and structure to the arguments, not merely a flat list
//! of anonymous values.  That makes it easier to remember what each
//! part is.  They have also been designed so that `rustfmt` will
//! accept the code within the macro and format it.  So the code must
//! parse as valid Rust, even though the interpretation is different.
//!
//! Arguments are evaluated early where possible.  This means that
//! many borrowing problems common in Rust can be avoided, for example
//! where argument expressions reference something already borrowed
//! earlier in the arg-list, especially `Cx` references.  So the code
//! can look more natural.
//!
//! Also, argument types are checked early where possible, to give
//! easier to understand error messages.

/// Shorthand for context argument type
///
/// Usually (for Rust 2018 edition) the context argument must be
/// written `cx: &mut Cx<'_, Self>`.  Using this macro it can instead
/// be written `cx: CX![]`.  This reduces the boilerplate, but keeps
/// everything else as plain Rust.  (The alternative would be to try
/// to wrap the whole method in a macro or use procedural macros.)
///
/// Note that sometimes you'll need a context with a different type
/// than `Self`, in which case `cx: CX![OtherType]` may be used,
/// equivalent to `cx: &mut Cx<'_, OtherType>`.
#[macro_export]
macro_rules! CX {
    () => { &mut $crate::Cx<'_, Self> };
    ($other:ty) => { &mut $crate::Cx<'_, $other> };
}

// Generate lists of indices from lists of `tt` AST objects.  This is
// used to convert arguments lists into indices so that a tuple can be
// generated and then indexed using `tup.3`-style syntax.
//
// Lists of `tt` items must be enclosed in `[]` and put at the start
// of the arg-list.  Each list is then converted to a list of indices
// contained in `[]` and placed at the end of the arg-list.  More than
// one `[]` list may be included and will be processed.  Finally the
// first identifier is taken to be the name of a macro and is invoked
// with the processed arg-list.
#[doc(hidden)]
#[macro_export]
macro_rules! indices {
    ( $cb:ident $( $args:tt )* ) =>
    { $crate::$cb!( $($args)* ) };
    ( [ ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* []) };
    ( [ $x0:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 ]) };
    ( [ $x0:tt $x1:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 ]) };
    ( [ $x0:tt $x1:tt $x2:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 ]) };
    ( [ $x0:tt $x1:tt $x2:tt $x3:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 ]) };
    ( [ $x0:tt $x1:tt $x2:tt $x3:tt $x4:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 ]) };
    ( [ $x0:tt $x1:tt $x2:tt $x3:tt $x4:tt $x5:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 ]) };
    ( [ $x0:tt $x1:tt $x2:tt $x3:tt $x4:tt $x5:tt $x6:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 ]) };
    ( [ $x0:tt $x1:tt $x2:tt $x3:tt $x4:tt $x5:tt $x6:tt $x7:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 ]) };
    ( [ $x0:tt $x1:tt $x2:tt $x3:tt $x4:tt $x5:tt $x6:tt $x7:tt $x8:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 8 ]) };
    ( [ $x0:tt $x1:tt $x2:tt $x3:tt $x4:tt $x5:tt $x6:tt $x7:tt $x8:tt $x9:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 8 9 ]) };
}

// Used to insert empty function calls in test mode which let us test
// coverage of the macro branches
#[cfg(test)]
#[doc(hidden)]
#[macro_export]
macro_rules! COVERAGE {
    ($name:ident) => {
        $crate::test::macro_coverage::$name();
    };
}
#[cfg(not(test))]
#[doc(hidden)]
#[macro_export]
macro_rules! COVERAGE {
    ($name:ident) => {};
}

/// Create a new actor and initialise it
///
/// ```ignore
/// let actor = actor!(core, Type::init(args...), notify);
/// let actor = actor!(core, <path::Type>::init(args...), notify);
/// ```
///
/// This may be used when creation and initialisation of the actor can
/// be done together.  Otherwise see [`actor_new!`].  The actor is
/// created and then the given initialisation function is called
/// asynchronously.  The `notify` argument is a `Ret<StopCause>`
/// instance to call if the actor is terminated.  An [`ActorOwn`]
/// reference is returned.
///
/// Implemented using [`ActorOwn::new`].
///
/// [`ActorOwn::new`]: struct.ActorOwn.html#method.new
/// [`ActorOwn`]: struct.ActorOwn.html
/// [`actor_new!`]: macro.actor_new.html
#[macro_export]
macro_rules! actor {
    ($core:expr, $type:ident :: $init:ident($($x:expr),* $(,)? ), $notify:expr) => {{
        $crate::COVERAGE!(actor_0);
        let notify = $notify;
        let core = $core.access_core();
        let actor = $crate::ActorOwn::<$type>::new(core, notify);
        $crate::call!([actor], <$type>::$init($($x),*));
        actor
    }};
    ($core:expr, <$type:ty> :: $init:ident($($x:expr),* $(,)? ), $notify:expr) => {{
        $crate::COVERAGE!(actor_1);
        let notify = $notify;
        let core = $core.access_core();
        let actor = $crate::ActorOwn::<$type>::new(core, notify);
        $crate::call!([actor], <$type>::$init($($x),*));
        actor
    }};
}

/// Create a new actor
///
/// This may be used when creation and initialisation of the actor
/// must be done separately, for example when two actors need to be
/// initialised with [`Fwd`] instances pointing to each other.
/// Otherwise see [`actor!`].
///
/// ```ignore
/// let actor = actor_new!(core, Type, notify);
/// call!([actor, core], Type::init(arg1, arg2...));
/// ```
///
/// An [`ActorOwn`] reference is returned.  Implemented using
/// [`ActorOwn::new`].
///
/// [`ActorOwn::new`]: struct.ActorOwn.html#method.new
/// [`ActorOwn`]: struct.ActorOwn.html
/// [`Fwd`]: struct.Fwd.html
/// [`actor!`]: macro.actor.html
#[macro_export]
macro_rules! actor_new {
    ($core:expr, $type:ty, $notify:expr) => {{
        $crate::COVERAGE!(actor_new);
        let notify = $notify;
        $crate::ActorOwn::<$type>::new($core, notify) // Expecting Cx, Core or Stakker ref
    }};
}

// Common code for `call!` etc
#[doc(hidden)]
#[macro_export]
macro_rules! generic_call {
    // Closures
    ($handler:ident $hargs:tt $access:ident;
     [$cx:expr], |$this:ident, $cxid:ident| $body:expr) => {{
         $crate::COVERAGE!(generic_call_0);
         let cb = move |$this: &mut Self, $cxid: &mut $crate::Cx<'_, Self>| $body;
         let cx: &mut $crate::Cx<'_, Self> = $cx;  // Expecting Cx<Self> ref
         let this = cx.this().clone();
         let core = $cx.access_core();
         $crate::$handler!($hargs core; move |s| this.apply(s, cb));
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$core:expr], |$stakker:ident| $body:expr) => {{
         $crate::COVERAGE!(generic_call_1);
         let core = $core.access_core();  // Expecting Core, Cx or Stakker ref
         let cb = move |$stakker : &mut $crate::Stakker| $body;
         $crate::$handler!($hargs core; cb);
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$cx:expr], |_ $($x:tt)*) => {{
         std::compile_error!("Do not use '_' as a closure argument in this macro; use a '_' prefix instead");
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$cx:expr], |$t:ident, _ $($x:tt)*) => {{
         std::compile_error!("Do not use '_' as a closure argument in this macro; use a '_' prefix instead");
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$cx:expr], move | $($x:tt)*) => {{
         std::compile_error!("Do not add `move` to closures as they get an implicit `move` anyway");
     }};
    // All remaining [actor] turned to [actor, actor]
    ($handler:ident $hargs:tt $access:ident;
     [$actor_or_cx:expr], $($x:tt)+) => {{
         // Can't do `let` for actor_or_cx here because that would move it and drop it
         $crate::generic_call!($handler $hargs $access; [$actor_or_cx, $actor_or_cx], $($x)+)
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$actor:expr, $core:expr], $method:ident ( $($x:expr),* $(,)? )) => {{
         $crate::COVERAGE!(generic_call_2);
         let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
         let _args = ( $($x,)* );  // This must be before access borrow
         let access = $core.$access();
         $crate::indices!([$(($x))*] generic_call_ready $handler $hargs access; actor _args $method)
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$actor:expr, $core:expr], $type:ident :: $method:ident ( $($x:expr),* $(,)? )) => {{
         $crate::COVERAGE!(generic_call_3);
         let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
         let _args = ( $($x,)* );  // This must be before access borrow
         let access = $core.$access();
         $crate::indices!([$(($x))*] generic_call_prep $handler $hargs access; actor _args <$type> $method)
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$actor:expr, $core:expr], < $type:ty > :: $method:ident ( $($x:expr),* $(,)? )) => {{
         $crate::COVERAGE!(generic_call_4);
         let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
         let _args = ( $($x,)* );  // This must be before access borrow
         let access = $core.$access();
         $crate::indices!([$(($x))*] generic_call_prep $handler $hargs access; actor _args <$type> $method)
     }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! generic_call_ready {
    ($handler:ident $hargs:tt $core:ident; $actor:ident $args:ident $method:ident [$($xi:tt)*]) => {
        $crate::$handler!($hargs $core; move |s| $actor.apply(s, move |o, c| o.$method(c $(, $args.$xi)*)))
    }
}
#[doc(hidden)]
#[macro_export]
macro_rules! generic_call_prep {
    ($handler:ident $hargs:tt $core:ident; $actor:ident $args:ident <$atyp:ty> $method:ident [$($xi:tt)*]) => {
        $crate::$handler!($hargs $core; move |s| $actor.apply_prep(s, move |c| <$atyp>::$method(c $(, $args.$xi)*)))
    }
}

/// Queue an actor call or inline code for execution soon
///
/// The call is deferred to the main defer queue, which will execute
/// as soon as possible.
///
/// Note that in the examples below, in general there can be any
/// number of arguments, including zero.  The number of arguments
/// depends on the signature of the called method.  All of these
/// values may be full Rust expressions, which are evaluated at the
/// call-site before queuing the call.  The exceptions are method
/// names, types/paths and argument names for closures which may be
/// any valid identifier.
///
/// Note that the part in square brackets gives the context of the
/// call.  For calls to the same actor, this is normally just `cx`.
/// For calls to another actor, normally the actor and a [`Core`]
/// reference should be given (e.g. `cx`), but if the [`Core`]
/// reference is omitted, the actor's built-in [`Deferrer`] is used
/// instead.  There is no difference in functionality (apart from
/// borrowing issues), just that [`Core`] is more likely to be in
/// cache.
///
/// ```ignore
/// // Call a method in this actor or in another actor
/// call!([cx], method(arg1, arg2...));
/// call!([actorxx, core], method(arg1, arg2...));
///
/// // Call a method whilst the actor is in the 'Prep' state, before it
/// // has a `Self` instance.  `Type` here in the first line may be `Self`.
/// call!([cx], Type::method(arg1, arg2...));
/// call!([cx], <path::Type>::method(arg1, arg2...));
/// call!([actoryy, core], Type::method(arg1, arg2...));
/// call!([actorzz, core], <path::Type>::method(arg1, arg2...));
///
/// // Use the actor's built-in Deferrer; doesn't require Core
/// call!([actorxx], method(arg1, arg2...));
/// call!([actoryy], Type::method(arg1, arg2...));
/// call!([actorzz], <path::Type>::method(arg1, arg2...));
///
/// // Defer a call to inline code.  Closure is always treated as a `move` closure
/// call!([cx], |this, cx| ...code...);   // Inline code which refers to this actor
/// call!([core], |stakker| ...code...);  // Generic inline code (`&mut Stakker` arg)
/// ```
///
/// Implemented using [`Core::defer`], [`Actor::defer`],
/// [`Actor::apply`] and [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Actor::defer`]: struct.Actor.html#method.defer
/// [`Core::defer`]: struct.Core.html#method.defer
/// [`Core`]: struct.Core.html
/// [`Deferrer`]: struct.Deferrer.html
#[macro_export]
macro_rules! call {
    ( $($x:tt)+ ) => {{
        $crate::COVERAGE!(call_0);
        $crate::generic_call!(call_aux () access_deferrer; $($x)+);
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! call_aux {
    (() $defer:ident; $cb:expr) => {{
        $crate::COVERAGE!(call_1);
        $defer.defer($cb);
    }};
}

/// Lazily perform an actor call or inline code
///
/// The call syntax accepted is identical to the [`call!`] macro.
/// However the plain `[actor], ...` form is not accepted because a
/// [`Core`] reference is always needed.  This queues calls to the
/// lazy queue which is run only after the normal defer queue has been
/// completely exhausted.  This can be used to run something at the
/// end of this batch of processing, for example to flush buffers
/// after accumulating data.
///
/// Implemented using [`Core::lazy`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::lazy`]: struct.Core.html#method.lazy
/// [`Core`]: struct.Core.html
/// [`call!`]: macro.call.html
#[macro_export]
macro_rules! lazy {
    ( $($x:tt)+ ) => {{
        $crate::COVERAGE!(lazy_0);
        $crate::generic_call!(lazy_aux () access_core; $($x)+); // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! lazy_aux {
    (() $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(lazy_1);
        $core.lazy($cb);
    }};
}

/// Perform an actor call or inline code when the process becomes idle
///
/// The call syntax accepted is identical to the [`call!`] macro.
/// However the `[actor], ...` form is not accepted because a [`Core`]
/// reference is always needed.  This queues calls to the idle queue
/// which is run only when there is nothing left to run in the normal
/// and lazy queues, and there is no I/O pending.  This can be used to
/// create backpressure in the case of processing overload, i.e. fetch
/// more data only when all current data has been fully processed.
///
/// Implemented using [`Core::idle`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::idle`]: struct.Core.html#method.idle
/// [`Core`]: struct.Core.html
/// [`call!`]: macro.call.html
#[macro_export]
macro_rules! idle {
    ( $($x:tt)+ ) => {{
        $crate::COVERAGE!(idle_0);
        $crate::generic_call!(idle_aux () access_core; $($x)+); // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! idle_aux {
    (() $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(idle_1);
        $core.idle($cb);
    }};
}

/// After a delay, perform an actor call or inline code
///
/// The syntax of the calls is identical to [`call!`], but with a
/// `Duration` argument first.  However the `[actor], ...` form is not
/// accepted because a [`Core`] reference is always needed.  Returns a
/// [`FixedTimerKey`] which can be used to delete the timer if
/// necessary.  See also [`at!`].
///
/// ```ignore
/// after!(dur, ...args-as-for-call-macro...);
/// ```
///
/// Implemented using [`Core::after`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::after`]: struct.Core.html#method.after
/// [`Core`]: struct.Core.html
/// [`FixedTimerKey`]: struct.FixedTimerKey.html
/// [`at!`]: macro.at.html
/// [`call!`]: macro.call.html
#[macro_export]
macro_rules! after {
    ( $dur:expr, $($x:tt)+ ) => {{
        $crate::COVERAGE!(after_0);
        let dur: Duration = $dur;
        $crate::generic_call!(after_aux (dur) access_core; $($x)+) // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! after_aux {
    (($dur:ident) $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(after_1);
        $core.after($dur, $cb);
    }};
}

/// At the given `Instant`, perform an actor call or inline code
///
/// The syntax of the calls is identical to [`call!`], but with an
/// `Instant` argument first.  However the `[actor], ...` form is not
/// accepted because a [`Core`] reference is always needed.  Returns a
/// [`FixedTimerKey`] which can be used to delete the timer if
/// necessary.  See also [`after!`].
///
/// ```ignore
/// at!(instant, ...args-as-for-call-macro...);
/// ```
///
/// Implemented using [`Core::timer_add`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::timer_add`]: struct.Core.html#method.timer_add
/// [`Core`]: struct.Core.html
/// [`FixedTimerKey`]: struct.FixedTimerKey.html
/// [`after!`]: macro.after.html
/// [`call!`]: macro.call.html
#[macro_export]
macro_rules! at {
    ( $inst:expr, $($x:tt)+ ) => {{
        $crate::COVERAGE!(at_0);
        let inst: std::time::Instant = $inst;
        $crate::generic_call!(at_aux (inst) access_core; $($x)+) // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! at_aux {
    (($inst:ident) $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(at_1);
        $core.timer_add($inst, $cb)
    }};
}

/// Create or update a "Max" timer
///
/// A "Max" timer expires at the latest (greatest) expiry time
/// provided.  Modifies a [`MaxTimerKey`] variable or structure member
/// provided by the caller, which should be initialised with
/// `Default::default()` (which is an invalid timer key).  If the
/// timer key currently in the variable is invalid or expired, then a
/// new timer is created using the call-args following, and the key
/// stored in the variable.  Otherwise the timer expiry time is
/// updated with the maximum of the current and provided expiry times,
/// and the call-args are ignored.  The timer may be deleted using
/// [`Core::timer_max_del`].
///
/// The syntax of the calls is identical to [`call!`], but with a
/// variable reference and `Instant` argument first.  However the
/// plain `[actor], ...` form is not accepted because a [`Core`]
/// reference is always needed.
///
/// ```ignore
/// let mut var = Default::default();
///   :::
/// timer_max!(&mut var, instant, ...args-as-for-call-macro...);
/// ```
///
/// Implemented using [`Core::timer_max_upd`],
/// [`Core::timer_max_add`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::timer_max_add`]: struct.Core.html#method.timer_max_add
/// [`Core::timer_max_del`]: struct.Core.html#method.timer_max_del
/// [`Core::timer_max_upd`]: struct.Core.html#method.timer_max_upd
/// [`Core`]: struct.Core.html
/// [`MaxTimerKey`]: struct.MaxTimerKey.html
/// [`call!`]: macro.call.html
#[macro_export]
macro_rules! timer_max {
    ( $var:expr, $inst:expr, $($x:tt)+ ) => {{
        $crate::COVERAGE!(timer_max_0);
        let var: &mut $crate::MaxTimerKey = $var;
        let inst: std::time::Instant = $inst;
        $crate::generic_call!(timer_max_aux (var, inst) access_core; $($x)+) // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! timer_max_aux {
    (($var:ident, $inst:ident) $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(timer_max_1);
        if !$core.timer_max_upd(*$var, $inst) {
            *$var = $core.timer_max_add($inst, $cb);
        }
    }};
}

/// Create or update a "Min" timer
///
/// A "Min" timer expires at the smallest (earliest) expiry time
/// provided.  Modifies a [`MinTimerKey`] variable or structure member
/// provided by the caller, which should be initialised with
/// `Default::default()` (which is an invalid timer key).  If the
/// timer key currently in the variable is invalid or expired, then a
/// new timer is created using the call-args following, and the key
/// stored in the variable.  Otherwise the timer expiry time is
/// updated with the minimum of the current and provided expiry times,
/// and the call-args are ignored.  The timer may be deleted using
/// [`Core::timer_min_del`].
///
/// The syntax of the calls is identical to [`call!`], but with a
/// variable reference and `Instant` argument first.  However the
/// plain `[actor], ...` form is not accepted because a [`Core`]
/// reference is always needed.
///
/// ```ignore
/// let mut var = Default::default();
///   :::
/// timer_min!(&mut var, instant, ...args-as-for-call-macro...);
/// ```
///
/// Implemented using [`Core::timer_min_upd`],
/// [`Core::timer_min_add`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::timer_min_add`]: struct.Core.html#method.timer_min_add
/// [`Core::timer_min_del`]: struct.Core.html#method.timer_min_del
/// [`Core::timer_min_upd`]: struct.Core.html#method.timer_min_upd
/// [`Core`]: struct.Core.html
/// [`MinTimerKey`]: struct.MinTimerKey.html
/// [`call!`]: macro.call.html
#[macro_export]
macro_rules! timer_min {
    ( $var:expr, $inst:expr, $($x:tt)+ ) => {{
        $crate::COVERAGE!(timer_min_0);
        let var: &mut $crate::MinTimerKey = $var;
        let inst: std::time::Instant = $inst;
        $crate::generic_call!(timer_min_aux (var, inst) access_core; $($x)+) // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! timer_min_aux {
    (($var:ident, $inst:ident) $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(timer_min_1);
        if !$core.timer_min_upd(*$var, $inst) {
            *$var = $core.timer_min_add($inst, $cb);
        }
    }};
}

/// Forward data via a [`Fwd`] instance
///
/// ```ignore
/// fwd!([fwd2zz], arg1, arg2...);
/// ```
///
/// There may be zero or more arguments, and they must match the
/// message type.  Implemented using [`Fwd::fwd`]
///
/// [`Fwd::fwd`]: struct.Fwd.html#method.fwd
/// [`Fwd`]: struct.Fwd.html
#[macro_export]
macro_rules! fwd {
    // A single argument isn't passed as a tuple, so has special
    // handling.
    ([ $fwd:expr ], $arg:expr) => {{
        $crate::COVERAGE!(fwd_0);
        $fwd.fwd($arg);
    }};
    ([ $fwd:expr ] $(, $arg:expr)*) => {{
        $crate::COVERAGE!(fwd_1);
        $fwd.fwd(( $($arg ,)* ));
    }};
}

/// Return data via a [`Ret`] instance
///
/// ```ignore
/// ret!([ret2zz], arg1, arg2...);
/// ```
///
/// This consumes the [`Ret`] instance, which means that it cannot be
/// used again.  There may be zero or more arguments, and they must
/// match the message type.  Implemented using [`Ret::ret`].
///
/// [`Ret::ret`]: struct.Ret.html#method.ret
/// [`Ret`]: struct.Ret.html
#[macro_export]
macro_rules! ret {
    // A single argument isn't passed as a tuple, so has special
    // handling.
    ([ $ret:expr ], $arg:expr) => {{
        $crate::COVERAGE!(ret_0);
        $ret.ret($arg);
    }};
    ([ $ret:expr ] $(, $arg:expr)*) => {{
        $crate::COVERAGE!(ret_1);
        $ret.ret(( $($arg ,)* ));
    }};
}

// Common code for `fwd_*!`
#[doc(hidden)]
#[macro_export]
macro_rules! generic_fwd {
    // Calling actors
    ($handler:ident; [$actor:expr], $method:ident ( $($x:expr),* ) as ( $($t:ty),* )) => {{
        $crate::COVERAGE!(generic_fwd_0);
        let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
        let _args = ( $($x,)* );
        $crate::indices!([$(($x))*] [$(($t))*] generic_fwd_ready $handler actor _args ($($t,)*) $method)
    }};
    ($handler:ident; [$actor:expr], $type:ident::$method:ident ( $($x:expr),* ) as ( $($t:ty),* )) => {{
        $crate::COVERAGE!(generic_fwd_1);
        let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
        let _args = ( $($x,)* );
        $crate::indices!([$(($x))*] [$(($t))*] generic_fwd_prep $handler actor _args ($($t,)*) <$type> $method)
    }};
    ($handler:ident; [$actor:expr], <$type:ty>::$method:ident ( $($x:expr),* ) as ( $($t:ty),* )) => {{
        $crate::COVERAGE!(generic_fwd_2);
        let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
        let _args = ( $($x,)* );
        $crate::indices!([$(($x))*] [$(($t))*] generic_fwd_prep $handler actor _args ($($t,)*) <$type> $method)
    }};
    // Calling closures
    ($handler:ident; [$cx:expr], |$this:ident, $cxid:ident, $arg:ident : $t:ty| $($body:tt)+) => {{
        $crate::COVERAGE!(generic_fwd_3);
        let cx: &mut $crate::Cx<'_, _> = $cx;  // Expecting Cx ref
        let actor = cx.this().clone();
        $crate::$handler!(ready actor;
                           move |$this, $cxid, $arg: $t| $($body)*;
                           std::compile_error!("`ret_to!` with a closure requires a single Option argument"))
    }};
    ($handler:ident; [$cx:expr], |$this:ident, $cxid:ident $(, $arg:ident : $t:ty)*| $($body:tt)+) => {{
        $crate::COVERAGE!(generic_fwd_4);
        let cx: &mut $crate::Cx<'_, _> = $cx;  // Expecting Cx ref
        let actor = cx.this().clone();
        $crate::$handler!(ready actor;
                           move |$this, $cxid, ($($arg),*): ($($t),*)| $($body)*;
                           std::compile_error!("`ret_to!` with a closure requires a single Option argument"))
    }};
    ($handler:ident; [$cx:expr], |_ $($x:tt)+) => {{
        std::compile_error!("Do not use '_' as a closure argument in this macro; use a '_' prefix instead");
    }};
    ($handler:ident; [$cx:expr], |$t:ident, _ $($x:tt)+) => {{
        std::compile_error!("Do not use '_' as a closure argument in this macro; use a '_' prefix instead");
    }};
    ($handler:ident; [$cx:expr], move | $($x:tt)*) => {{
        std::compile_error!("Do not add `move` to closures as they get an implicit `move` anyway");
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! generic_fwd_ready {
    ($handler:ident $actor:ident $args:ident ($t:ty,) $method:ident [$($xi:tt)*] [$($ti:tt)*]) => {{
        $crate::COVERAGE!(generic_fwd_5);
        $crate::$handler!(ready $actor;
                           move |a, cx, m: $t| a.$method(cx $(, $args.$xi)* , m);
                           move |a, cx, m: Option<$t>| a.$method(cx $(, $args.$xi)* , m))
    }};
    ($handler:ident $actor:ident $args:ident ($($t:ty,)*) $method:ident [$($xi:tt)*] [$($ti:tt)*]) => {{
        $crate::COVERAGE!(generic_fwd_6);
        $crate::$handler!(ready $actor;
                           move |a, cx, _m: ($($t,)*)| a.$method(cx $(, $args.$xi)* $(, _m.$ti)*);
                           move |a, cx, m: Option<($($t,)*)>| a.$method(cx $(, $args.$xi)*, m))
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! generic_fwd_prep {
    ($handler:ident $actor:ident $args:ident ($t:ty,) <$atyp:ty> $method:ident [$($xi:tt)*] [$($ti:tt)*]) => {{
        $crate::COVERAGE!(generic_fwd_7);
        $crate::$handler!(prep $actor;
                           move |cx, m: $t| <$atyp>::$method(cx $(, $args.$xi)* , m);
                           move |cx, m: Option<$t>| <$atyp>::$method(cx $(, $args.$xi)* , m))
    }};
    ($handler:ident $actor:ident $args:ident ($($t:ty,)*) <$atyp:ty> $method:ident [$($xi:tt)*] [$($ti:tt)*]) => {{
        $crate::COVERAGE!(generic_fwd_8);
        $crate::$handler!(prep $actor;
                           move |cx, _m: ($($t,)*)| <$atyp>::$method(cx $(, $args.$xi)* $(, _m.$ti)*);
                           move |cx, m: Option<($($t,)*)>| <$atyp>::$method(cx $(, $args.$xi)*, m))
    }};
}

/// Create a [`Fwd`] instance for actor calls
///
/// The syntax is similar to that used for [`call!`], except that the
/// call is followed by `as` and a tuple of argument types (which may
/// be empty).  These types are the types of the arguments accepted by
/// the [`Fwd`] instance when it is called, and which are appended to
/// the argument list of the method call.  So each call to a method is
/// made up of first the fixed arguments (if any) provided at the time
/// the [`Fwd`] instance was created, followed by the variable arguments
/// (if any) provided when the [`Fwd`] instance was called.  This must
/// match the signature of the method itself.
///
/// `as` is used here because this is a standard Rust token that can
/// introduce a tuple and so `rustfmt` can format the code, although
/// something like `with` would make more sense.
///
/// ```ignore
/// // Forward to a method in this actor or in another actor
/// fwd_to!([cx], method(arg1, arg2...) as (type1, type2...));
/// fwd_to!([actorxx], method(arg1, arg2...) as (type1, type2...));
///
/// // Forward to a method whilst in the 'Prep' state
/// fwd_to!([cx], Self::method(arg1, arg2...) as (type1, type2...));
/// fwd_to!([cx], <path::Type>::method(arg1, arg2...) as (type1, type2...));
/// fwd_to!([actoryy], Type::method(arg1, arg2...) as (type1, type2...));
/// fwd_to!([actorzz], <path::Type>::method(arg1, arg2...) as (type1, type2...));
///
/// // Forward a call to inline code which refers to this actor.  In
/// // this case the `Fwd` argument list is extracted from the closure
/// // argument list and no `as` section is required.  Closure is
/// // always treated as a `move` closure.
/// fwd_to!([cx], |this, cx, arg1: type1, arg2: type2...| ...code...);
/// ```
///
/// Implemented using [`Fwd::to_actor`] or [`Fwd::to_actor_prep`].
///
/// [`Fwd::to_actor_prep`]: struct.Fwd.html#method.to_actor_prep
/// [`Fwd::to_actor`]: struct.Fwd.html#method.to_actor
/// [`Fwd`]: struct.Fwd.html
/// [`call!`]: macro.call.html
#[macro_export]
macro_rules! fwd_to {
    ($($x:tt)*) => {{
        $crate::COVERAGE!(fwd_to_0);
        $crate::generic_fwd!(fwd_to_aux; $($x)*)
    }}
}
#[doc(hidden)]
#[macro_export]
macro_rules! fwd_to_aux {
    (ready $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(fwd_to_1);
        $crate::Fwd::to_actor($actor, $cb)
    }};
    (prep $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(fwd_to_2);
        $crate::Fwd::to_actor_prep($actor, $cb)
    }};
}

/// Create a [`Fwd`] instance which panics when called
///
/// ```ignore
/// fwd_panic!(panic_msg)
/// ```
///
/// Argument will typically be a `String` or `&str`.  Note that this
/// will receive and ignore any message type.  Implemented using
/// [`Fwd::panic`].
///
/// [`Fwd::panic`]: struct.Fwd.html#method.panic
/// [`Fwd`]: struct.Fwd.html
#[macro_export]
macro_rules! fwd_panic {
    ($arg:expr) => {{
        $crate::COVERAGE!(fwd_panic_0);
        $crate::Fwd::panic($arg)
    }};
}

/// Create a [`Fwd`] instance which performs an arbitrary action
///
/// The action is performed immediately at the point in the code where
/// the message is forwarded.  So this is executed synchronously
/// rather than asynchronously.  However it will normally be used to
/// defer a call, since it doesn't have access to any actor, just the
/// message data.  If it doesn't have an actor reference available, it
/// will probably need to capture a [`Deferrer`] in the closure.
///
/// ```ignore
/// fwd_do!(|msg| ...);
/// ```
///
/// Implemented using [`Fwd::new`].
///
/// [`Deferrer`]: struct.Deferrer.html
/// [`Fwd::new`]: struct.Fwd.html#method.new
/// [`Fwd`]: struct.Fwd.html
#[macro_export]
macro_rules! fwd_do {
    ($cb:expr) => {{
        $crate::COVERAGE!(fwd_do_0);
        $crate::Fwd::new($cb)
    }};
}

/// Create a [`Fwd`] instance which does nothing at all
///
/// ```ignore
/// fwd_nop!();
/// ```
///
/// NOP means "no operation".  Implemented using [`Fwd::new`].
///
/// [`Fwd::new`]: struct.Fwd.html#method.new
/// [`Fwd`]: struct.Fwd.html
#[macro_export]
macro_rules! fwd_nop {
    () => {{
        $crate::COVERAGE!(fwd_nop_0);
        $crate::Fwd::new(|_| {})
    }};
}

/// Create a [`Ret`] instance for actor calls
///
/// This is guaranteed to be called **exactly once**, even if dropped.
/// The message is passed as `Some(msg)` if called normally, or as
/// `None` if the [`Ret`] instance was dropped (e.g. if it couldn't be
/// delivered somewhere).  The underlying closure is a `FnOnce`, so
/// non-Copy types can be passed.  The syntax is the same as for
/// [`fwd_to!`], and the message types are specified as normal.
/// However the message is received in a single argument on the
/// receiving method, either `Option<type>` for a single type, or else
/// `Option<(type1, type2...)>`.
///
/// ```ignore
/// ret_to!(...arguments-as-for-fwd_to-macro...);
/// ```
///
/// The closure form must use a single `Option` as above as the
/// argument type, containing all the types passed from the [`Ret`].
///
/// Implemented using [`Ret::to_actor`] or [`Ret::to_actor_prep`].
///
/// [`Ret::to_actor_prep`]: struct.Ret.html#method.to_actor_prep
/// [`Ret::to_actor`]: struct.Ret.html#method.to_actor
/// [`Ret`]: struct.Ret.html
/// [`fwd_to!`]: macro.fwd_to.html
#[macro_export]
macro_rules! ret_to {
    ([$cx:expr], |$this:ident, $cxid:ident, $arg:ident : Option<$t:ty>| $($body:tt)+) => {{
        $crate::COVERAGE!(ret_to_0);
        let cx: &mut $crate::Cx<'_, _> = $cx;  // Expecting Cx ref
        let actor = cx.this().clone();
        $crate::Ret::to_actor(actor, move |$this, $cxid, $arg: Option<$t>| $($body)*)
    }};
    ([$cx:expr], move | $($x:tt)*) => {{
        std::compile_error!("Do not add `move` to closures as they get an implicit `move` anyway");
    }};
    // Closures not matching above will get caught below, giving a
    // compilation error
    ($($x:tt)*) => {{
        $crate::COVERAGE!(ret_to_1);
        $crate::generic_fwd!(ret_to_aux; $($x)*)
    }}
}
#[doc(hidden)]
#[macro_export]
macro_rules! ret_to_aux {
    (ready $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(ret_to_2);
        $crate::Ret::to_actor($actor, $cb2)
    }};
    (prep $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(ret_to_3);
        $crate::Ret::to_actor_prep($actor, $cb2)
    }};
}

/// Create a [`Ret`] instance for actor calls, ignoring drops
///
/// This is guaranteed to be called **at most once**.  Dropping the
/// [`Ret`] instance is ignored, unlike [`ret_to!`], so the message is
/// passed through without an `Option` wrapper, just like [`fwd_to!`].
/// The underlying closure is a `FnOnce`, so non-Copy types can be
/// passed.  The syntax is the same as for [`fwd_to!`], and messages
/// are received in exactly the same way in the target actor method.
///
/// ```ignore
/// ret_some_to!(...arguments-as-for-fwd_to-macro...);
/// ```
///
/// Implemented using [`Ret::some_to_actor`] or [`Ret::some_to_actor_prep`].
///
/// [`Ret::some_to_actor_prep`]: struct.Ret.html#method.some_to_actor_prep
/// [`Ret::some_to_actor`]: struct.Ret.html#method.some_to_actor
/// [`Ret`]: struct.Ret.html
/// [`fwd_to!`]: macro.fwd_to.html
/// [`ret_to!`]: macro.ret_to.html
#[macro_export]
macro_rules! ret_some_to {
    ($($x:tt)*) => {{
        $crate::COVERAGE!(ret_some_to_0);
        $crate::generic_fwd!(ret_some_to_aux; $($x)*)
    }}
}
#[doc(hidden)]
#[macro_export]
macro_rules! ret_some_to_aux {
    (ready $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(ret_some_to_1);
        $crate::Ret::some_to_actor($actor, $cb)
    }};
    (prep $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(ret_some_to_2);
        $crate::Ret::some_to_actor_prep($actor, $cb)
    }};
}

/// Create a [`Ret`] instance which performs an arbitrary action
///
/// The action is performed immediately at the point in the code where
/// the message is returned.  So this is executed synchronously rather
/// than asynchronously.  However it will normally be used to defer a
/// call, since it doesn't have access to any actor, just the message
/// data.  If it doesn't have an actor reference available, it will
/// probably need to capture a [`Deferrer`] in the closure.
///
/// ```ignore
/// ret_do!(|msg| ...);
/// ```
///
/// Implemented using [`Ret::new`].
///
/// [`Deferrer`]: struct.Deferrer.html
/// [`Ret::new`]: struct.Ret.html#method.new
/// [`Ret`]: struct.Ret.html
#[macro_export]
macro_rules! ret_do {
    ($cb:expr) => {{
        $crate::COVERAGE!(ret_do_0);
        $crate::Ret::new($cb)
    }};
}

/// Create a [`Ret`] instance which performs an arbitrary action, ignoring drops
///
/// Like [`ret_some_to!`], this ignores the case of the [`Ret`] instance
/// being dropped, so the message is received without the wrapping
/// `Option`.  The action is performed immediately at the point in the
/// code where the message is returned.  So this is executed
/// synchronously rather than asynchronously.  However it will
/// normally be used to defer a call, since it doesn't have access to
/// any actor, just the message data.  If it doesn't have an actor
/// reference available, it will probably need to capture a
/// [`Deferrer`] in the closure.
///
/// ```ignore
/// ret_some_do!(|msg| ...);
/// ```
///
/// Implemented using [`Ret::new`].
///
/// [`Deferrer`]: struct.Deferrer.html
/// [`Ret::new`]: struct.Ret.html#method.new
/// [`Ret`]: struct.Ret.html
/// [`ret_some_to!`]: macro.ret_some_to.html
#[macro_export]
macro_rules! ret_some_do {
    ($cb:expr) => {{
        $crate::COVERAGE!(ret_some_do_0);
        $crate::Ret::new(move |m| {
            if let Some(m) = m {
                ($cb)(m);
            }
        })
    }};
}

/// Create a [`Ret`] instance which panics when called
///
/// ```ignore
/// ret_panic!(panic_msg)
/// ```
///
/// Ignores the case where the [`Ret`] instance is dropped.  Argument
/// will typically be a `String` or `&str`.  Note that this will
/// receive and ignore any message type.  Implemented using
/// [`Ret::panic`].
///
/// [`Ret::panic`]: struct.Ret.html#method.panic
/// [`Ret`]: struct.Ret.html
#[macro_export]
macro_rules! ret_panic {
    ($arg:expr) => {{
        $crate::COVERAGE!(ret_panic_0);
        $crate::Ret::panic($arg)
    }};
}

/// Create a [`Ret`] instance which does nothing at all
///
/// ```ignore
/// ret_nop!();
/// ```
///
/// NOP means "no operation".  Implemented using [`Ret::new`].
///
/// [`Ret::new`]: struct.Ret.html#method.new
/// [`Ret`]: struct.Ret.html
#[macro_export]
macro_rules! ret_nop {
    () => {{
        $crate::COVERAGE!(ret_nop_0);
        $crate::Ret::new(|_| {})
    }};
}

/// Create a [`Ret`] instance which shuts down the event loop
///
/// ```ignore
/// ret_shutdown!(core);
/// ```
///
/// This can be used as the notify handler on an actor to shut down
/// the event loop once that actor terminates.  The reason for the
/// actor's failure is passed through, and can be recovered after loop
/// termination using [`Core::shutdown_reason`].  See also
/// [`Ret::new`] and [`Core::shutdown`].
///
/// [`Core::shutdown_reason`]: struct.Core.html#method.shutdown_reason
/// [`Core::shutdown`]: struct.Core.html#method.shutdown
/// [`Ret::new`]: struct.Ret.html#method.new
/// [`Ret`]: struct.Ret.html
#[macro_export]
macro_rules! ret_shutdown {
    ($core:expr) => {{
        $crate::COVERAGE!(ret_shutdown_0);
        let core = $core.access_core();
        let deferrer = core.deferrer();
        $crate::Ret::new(move |m| {
            if let Some(cause) = m {
                deferrer.defer(|s| s.shutdown(cause));
            } else {
                deferrer.defer(|s| s.shutdown($crate::StopCause::Dropped));
            }
        })
    }};
}