1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
//! A library to help grow the stack when it runs out of space.
//!
//! This is an implementation of manually instrumented segmented stacks where points in a program's
//! control flow are annotated with "maybe grow the stack here". Each point of annotation indicates
//! how far away from the end of the stack it's allowed to be, plus the amount of stack to allocate
//! if it does reach the end.
//!
//! Once a program has reached the end of its stack, a temporary stack on the heap is allocated and
//! is switched to for the duration of a closure.
//!
//! For a set of lower-level primitives, consider the `psm` crate.
//!
//! # Examples
//!
//! ```
//! // Grow the stack if we are within the "red zone" of 32K, and if we allocate
//! // a new stack allocate 1MB of stack space.
//! //
//! // If we're already in bounds, just run the provided closure on current stack.
//! stacker::maybe_grow(32 * 1024, 1024 * 1024, || {
//!     // guaranteed to have at least 32K of stack
//! });
//! ```

#![allow(improper_ctypes)]

#[macro_use]
extern crate cfg_if;
extern crate libc;
#[cfg(windows)]
extern crate winapi;
#[macro_use]
extern crate psm;

use std::cell::Cell;

/// Grows the call stack if necessary.
///
/// This function is intended to be called at manually instrumented points in a program where
/// recursion is known to happen quite a bit. This function will check to see if we're within
/// `red_zone` bytes of the end of the stack, and if so it will allocate a new stack of at least
/// `stack_size` bytes.
///
/// The closure `f` is guaranteed to run on a stack with at least `red_zone` bytes, and it will be
/// run on the current stack if there's space available.
#[inline(always)]
pub fn maybe_grow<R, F: FnOnce() -> R>(red_zone: usize, stack_size: usize, callback: F) -> R {
    // if we can't guess the remaining stack (unsupported on some platforms) we immediately grow
    // the stack and then cache the new stack size (which we do know now because we allocated it.
    let enough_space = match remaining_stack() {
        Some(remaining) => remaining >= red_zone,
        None => false,
    };
    if enough_space {
        callback()
    } else {
        grow(stack_size, callback)
    }
}

/// Always creates a new stack for the passed closure to run on.
/// The closure will still be on the same thread as the caller of `grow`.
/// This will allocate a new stack with at least `stack_size` bytes.
pub fn grow<R, F: FnOnce() -> R>(stack_size: usize, callback: F) -> R {
    // To avoid monomorphizing `_grow()` and everything it calls,
    // we convert the generic callback to a dynamic one.
    let mut opt_callback = Some(callback);
    let mut ret = None;
    let ret_ref = &mut ret;

    // This wrapper around `callback` achieves two things:
    // * It converts the `impl FnOnce` to a `dyn FnMut`.
    //   `dyn` because we want it to not be generic, and
    //   `FnMut` because we can't pass a `dyn FnOnce` around without boxing it.
    // * It eliminates the generic return value, by writing it to the stack of this function.
    //   Otherwise the closure would have to return an unsized value, which isn't possible.
    let dyn_callback: &mut dyn FnMut() = &mut || {
        let taken_callback = opt_callback.take().unwrap();
        *ret_ref = Some(taken_callback());
    };

    _grow(stack_size, dyn_callback);
    ret.unwrap()
}

/// Queries the amount of remaining stack as interpreted by this library.
///
/// This function will return the amount of stack space left which will be used
/// to determine whether a stack switch should be made or not.
pub fn remaining_stack() -> Option<usize> {
    let current_ptr = current_stack_ptr();
    get_stack_limit().map(|limit| current_ptr - limit)
}

psm_stack_information! (
    yes {
        fn current_stack_ptr() -> usize {
            psm::stack_pointer() as usize
        }
    }
    no {
        #[inline(always)]
        fn current_stack_ptr() -> usize {
            unsafe {
                let mut x = std::mem::MaybeUninit::<u8>::uninit();
                // Unlikely to be ever exercised. As a fallback we execute a volatile read to a
                // local (to hopefully defeat the optimisations that would make this local a static
                // global) and take its address. This way we get a very approximate address of the
                // current frame.
                x.as_mut_ptr().write_volatile(42);
                x.as_ptr() as usize
            }
        }
    }
);

thread_local! {
    static STACK_LIMIT: Cell<Option<usize>> = Cell::new(unsafe {
        guess_os_stack_limit()
    })
}

#[inline(always)]
fn get_stack_limit() -> Option<usize> {
    STACK_LIMIT.with(|s| s.get())
}

#[inline(always)]
#[allow(unused)]
fn set_stack_limit(l: Option<usize>) {
    STACK_LIMIT.with(|s| s.set(l))
}

psm_stack_manipulation! {
    yes {
        struct StackRestoreGuard {
            new_stack: *mut std::ffi::c_void,
            stack_bytes: usize,
            old_stack_limit: Option<usize>,
        }

        impl StackRestoreGuard {
            #[cfg(target_arch = "wasm32")]
            unsafe fn new(stack_bytes: usize, _page_size: usize) -> StackRestoreGuard {
                let layout = std::alloc::Layout::from_size_align(stack_bytes, 16).unwrap();
                let ptr = std::alloc::alloc(layout);
                assert!(!ptr.is_null(), "unable to allocate stack");
                StackRestoreGuard {
                    new_stack: ptr as *mut _,
                    stack_bytes,
                    old_stack_limit: get_stack_limit(),
                }
            }

            #[cfg(not(target_arch = "wasm32"))]
            unsafe fn new(stack_bytes: usize, page_size: usize) -> StackRestoreGuard {
                let new_stack = libc::mmap(
                    std::ptr::null_mut(),
                    stack_bytes,
                    libc::PROT_NONE,
                    libc::MAP_PRIVATE |
                    libc::MAP_ANON,
                    -1, // Some implementations assert fd = -1 if MAP_ANON is specified
                    0
                );
                if new_stack == libc::MAP_FAILED {
                    let error = std::io::Error::last_os_error();
                    panic!("allocating stack failed with: {}", error)
                }
                let guard = StackRestoreGuard {
                    new_stack,
                    stack_bytes,
                    old_stack_limit: get_stack_limit(),
                };
                let above_guard_page = new_stack.add(page_size);
                #[cfg(not(target_os = "openbsd"))]
                let result = libc::mprotect(
                    above_guard_page,
                    stack_bytes - page_size,
                    libc::PROT_READ | libc::PROT_WRITE
                );
                #[cfg(target_os = "openbsd")]
                let result = if libc::mmap(
                        above_guard_page,
                        stack_bytes - page_size,
                        libc::PROT_READ | libc::PROT_WRITE,
                        libc::MAP_FIXED | libc::MAP_PRIVATE | libc::MAP_ANON | libc::MAP_STACK,
                        -1,
                        0) == above_guard_page {
                    0
                } else {
                    -1
                };
                if result == -1 {
                    let error = std::io::Error::last_os_error();
                    drop(guard);
                    panic!("setting stack permissions failed with: {}", error)
                }
                guard
            }
        }

        impl Drop for StackRestoreGuard {
            fn drop(&mut self) {
                #[cfg(target_arch = "wasm32")]
                unsafe {
                    std::alloc::dealloc(
                        self.new_stack as *mut u8,
                        std::alloc::Layout::from_size_align_unchecked(self.stack_bytes, 16),
                    );
                }
                #[cfg(not(target_arch = "wasm32"))]
                unsafe {
                    // FIXME: check the error code and decide what to do with it.
                    // Perhaps a debug_assertion?
                    libc::munmap(self.new_stack, self.stack_bytes);
                }
                set_stack_limit(self.old_stack_limit);
            }
        }

        fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
            // Calculate a number of pages we want to allocate for the new stack.
            // For maximum portability we want to produce a stack that is aligned to a page and has
            // a size that’s a multiple of page size. Furthermore we want to allocate two extras pages
            // for the stack guard. To achieve that we do our calculations in number of pages and
            // convert to bytes last.
            let page_size = page_size();
            let requested_pages = stack_size
                .checked_add(page_size - 1)
                .expect("unreasonably large stack requested") / page_size;
            let stack_pages = std::cmp::max(1, requested_pages) + 2;
            let stack_bytes = stack_pages.checked_mul(page_size)
                .expect("unreasonably large stack requesteed");

            // Next, there are a couple of approaches to how we allocate the new stack. We take the
            // most obvious path and use `mmap`. We also `mprotect` a guard page into our
            // allocation.
            //
            // We use a guard pattern to ensure we deallocate the allocated stack when we leave
            // this function and also try to uphold various safety invariants required by `psm`
            // (such as not unwinding from the callback we pass to it).
            //
            // Other than that this code has no meaningful gotchas.
            unsafe {
                let guard = StackRestoreGuard::new(stack_bytes, page_size);
                let above_guard_page = guard.new_stack.add(page_size);
                set_stack_limit(Some(above_guard_page as usize));
                let panic = psm::on_stack(above_guard_page as *mut _, stack_size, move || {
                    std::panic::catch_unwind(std::panic::AssertUnwindSafe(callback)).err()
                });
                drop(guard);
                if let Some(p) = panic {
                    std::panic::resume_unwind(p);
                }
            }
        }

        fn page_size() -> usize {
            // FIXME: consider caching the page size.
            #[cfg(not(target_arch = "wasm32"))]
            unsafe { libc::sysconf(libc::_SC_PAGE_SIZE) as usize }
            #[cfg(target_arch = "wasm32")]
            { 65536 }
        }
    }

    no {
        #[cfg(not(windows))]
        fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
            drop(stack_size);
            callback();
        }
    }
}

cfg_if! {
    if #[cfg(windows)] {
        use std::ptr;
        use std::io;

        use winapi::shared::basetsd::*;
        use winapi::shared::minwindef::{LPVOID, BOOL};
        use winapi::shared::ntdef::*;
        use winapi::um::fibersapi::*;
        use winapi::um::memoryapi::*;
        use winapi::um::processthreadsapi::*;
        use winapi::um::winbase::*;

        // Make sure the libstacker.a (implemented in C) is linked.
        // See https://github.com/rust-lang/rust/issues/65610
        #[link(name="stacker")]
        extern {
            fn __stacker_get_current_fiber() -> PVOID;
        }

        struct FiberInfo<F> {
            callback: std::mem::MaybeUninit<F>,
            panic: Option<Box<dyn std::any::Any + Send + 'static>>,
            parent_fiber: LPVOID,
        }

        unsafe extern "system" fn fiber_proc<F: FnOnce()>(data: LPVOID) {
            // This function is the entry point to our inner fiber, and as argument we get an
            // instance of `FiberInfo`. We will set-up the "runtime" for the callback and execute
            // it.
            let data = &mut *(data as *mut FiberInfo<F>);
            let old_stack_limit = get_stack_limit();
            set_stack_limit(guess_os_stack_limit());
            let callback = data.callback.as_ptr();
            data.panic = std::panic::catch_unwind(std::panic::AssertUnwindSafe(callback.read())).err();

            // Restore to the previous Fiber
            set_stack_limit(old_stack_limit);
            SwitchToFiber(data.parent_fiber);
            return;
        }

        fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
            // Fibers (or stackful coroutines) is the only official way to create new stacks on the
            // same thread on Windows. So in order to extend the stack we create fiber and switch
            // to it so we can use it's stack. After running `callback` within our fiber, we switch
            // back to the current stack and destroy the fiber and its associated stack.
            unsafe {
                let was_fiber = IsThreadAFiber() == TRUE as BOOL;
                let mut data = FiberInfo {
                    callback: std::mem::MaybeUninit::new(callback),
                    panic: None,
                    parent_fiber: {
                        if was_fiber {
                            // Get a handle to the current fiber. We need to use a C implementation
                            // for this as GetCurrentFiber is an header only function.
                            __stacker_get_current_fiber()
                        } else {
                            // Convert the current thread to a fiber, so we are able to switch back
                            // to the current stack. Threads coverted to fibers still act like
                            // regular threads, but they have associated fiber data. We later
                            // convert it back to a regular thread and free the fiber data.
                            ConvertThreadToFiber(ptr::null_mut())
                        }
                    },
                };

                if data.parent_fiber.is_null() {
                    panic!("unable to convert thread to fiber: {}", io::Error::last_os_error());
                }

                let fiber = CreateFiber(
                    stack_size as SIZE_T,
                    Some(fiber_proc::<&mut dyn FnMut()>),
                    &mut data as *mut FiberInfo<&mut dyn FnMut()> as *mut _,
                );
                if fiber.is_null() {
                    panic!("unable to allocate fiber: {}", io::Error::last_os_error());
                }

                // Switch to the fiber we created. This changes stacks and starts executing
                // fiber_proc on it. fiber_proc will run `callback` and then switch back to run the
                // next statement.
                SwitchToFiber(fiber);
                DeleteFiber(fiber);

                // Clean-up.
                if !was_fiber {
                    if ConvertFiberToThread() == 0 {
                        // FIXME: Perhaps should not panic here?
                        panic!("unable to convert back to thread: {}", io::Error::last_os_error());
                    }
                }
                if let Some(p) = data.panic {
                    std::panic::resume_unwind(p);
                }
            }
        }

        #[inline(always)]
        fn get_thread_stack_guarantee() -> usize {
            let min_guarantee = if cfg!(target_pointer_width = "32") {
                0x1000
            } else {
                0x2000
            };
            let mut stack_guarantee = 0;
            unsafe {
                // Read the current thread stack guarantee
                // This is the stack reserved for stack overflow
                // exception handling.
                // This doesn't return the true value so we need
                // some further logic to calculate the real stack
                // guarantee. This logic is what is used on x86-32 and
                // x86-64 Windows 10. Other versions and platforms may differ
                SetThreadStackGuarantee(&mut stack_guarantee)
            };
            std::cmp::max(stack_guarantee, min_guarantee) as usize + 0x1000
        }

        #[inline(always)]
        unsafe fn guess_os_stack_limit() -> Option<usize> {
            // Query the allocation which contains our stack pointer in order
            // to discover the size of the stack
            //
            // FIXME: we could read stack base from the TIB, specifically the 3rd element of it.
            type QueryT = winapi::um::winnt::MEMORY_BASIC_INFORMATION;
            let mut mi = std::mem::MaybeUninit::<QueryT>::uninit();
            VirtualQuery(
                psm::stack_pointer() as *const _,
                mi.as_mut_ptr(),
                std::mem::size_of::<QueryT>() as SIZE_T,
            );
            Some(mi.assume_init().AllocationBase as usize + get_thread_stack_guarantee() + 0x1000)
        }
    } else if #[cfg(any(target_os = "linux", target_os="solaris", target_os = "netbsd"))] {
        unsafe fn guess_os_stack_limit() -> Option<usize> {
            let mut attr = std::mem::MaybeUninit::<libc::pthread_attr_t>::uninit();
            assert_eq!(libc::pthread_attr_init(attr.as_mut_ptr()), 0);
            assert_eq!(libc::pthread_getattr_np(libc::pthread_self(),
                                                attr.as_mut_ptr()), 0);
            let mut stackaddr = std::ptr::null_mut();
            let mut stacksize = 0;
            assert_eq!(libc::pthread_attr_getstack(
                attr.as_ptr(), &mut stackaddr, &mut stacksize
            ), 0);
            assert_eq!(libc::pthread_attr_destroy(attr.as_mut_ptr()), 0);
            Some(stackaddr as usize)
        }
    } else if #[cfg(any(target_os = "freebsd", target_os = "dragonfly"))] {
        unsafe fn guess_os_stack_limit() -> Option<usize> {
            let mut attr = std::mem::MaybeUninit::<libc::pthread_attr_t>::uninit();
            assert_eq!(libc::pthread_attr_init(attr.as_mut_ptr()), 0);
            assert_eq!(libc::pthread_attr_get_np(libc::pthread_self(), attr.as_mut_ptr()), 0);
            let mut stackaddr = std::ptr::null_mut();
            let mut stacksize = 0;
            assert_eq!(libc::pthread_attr_getstack(
                attr.as_ptr(), &mut stackaddr, &mut stacksize
            ), 0);
            assert_eq!(libc::pthread_attr_destroy(attr.as_mut_ptr()), 0);
            Some(stackaddr as usize)
        }
    } else if #[cfg(target_os = "openbsd")] {
        unsafe fn guess_os_stack_limit() -> Option<usize> {
            let mut stackinfo = std::mem::MaybeUninit::<libc::stack_t>::uninit();
            assert_eq!(libc::pthread_stackseg_np(libc::pthread_self(), stackinfo.as_mut_ptr()), 0);
            Some(stackinfo.assume_init().ss_sp as usize - stackinfo.assume_init().ss_size)
        }
    } else if #[cfg(target_os = "macos")] {
        unsafe fn guess_os_stack_limit() -> Option<usize> {
            Some(libc::pthread_get_stackaddr_np(libc::pthread_self()) as usize -
                libc::pthread_get_stacksize_np(libc::pthread_self()) as usize)
        }
    } else {
        // fallback for other platforms is to always increase the stack if we're on
        // the root stack. After we increased the stack once, we know the new stack
        // size and don't need this pessimization anymore
        #[inline(always)]
        unsafe fn guess_os_stack_limit() -> Option<usize> {
            None
        }
    }
}