1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
//! This library implements a heapless linked list by keeping each element on the stack.
//!
//! The primary purpose is to efficiently keep a context when traversing trees recursively.
//!
//! Compared to a traditional linked list, this has a few drawbacks:
//! * Not "self-contained": you cannot easily store a `Node` as a member like you would a
//!   `LinkedList`.
//! * Many methods use recursion and lead to increase stack memory usage (because of function
//!   frames).
//!
//! The main advantage is that it does not need any heap allocation, and can grow to arbitrary
//! sizes (only limited by your stack size).
#![no_std]

/// A stack-based linked list.
///
/// This is a node in a traditional linked list. The main difference is that it does not box the
/// next element, but simply points to it. As a result, it is harder to pass around or to mutate,
/// but has the advantage of not requiring any heap allocation.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum Node<'a, T> {
    /// An empty list.
    Root,
    /// A node in the list with some data and a tail.
    Head {
        /// Some data attached on this node. This is the first element of this list.
        data: T,
        /// The rest of the list as a tail node.
        tail: &'a Node<'a, T>,
    },
}

/// Convenient macro to define a stack list from a slice literal.
///
/// Note that this will actually define a bunch of local stack variables (one per item in the
/// list). This is _not_ an expression to define a standalone stack list, this would be impossible.
///
/// # Examples
///
/// ```rust
/// stack_list::make!(let my_list = [1, 2, 3, 4]);
/// assert_eq!(my_list.len(), 4);
/// assert_eq!(my_list.get(3), Some(&4));
///
/// println!("{:?}", my_list);
/// ```
#[macro_export]
macro_rules! make {
    ( let $name:ident = [ $head:expr $(,)? ] ) => {
        let root = $crate::Node::Root;
        let $name = root.prepend($head);
    };
    ( let $name:ident = [ $head:expr , $($tail:expr),* ] ) => {
        $crate::make!(let n = [ $($tail),* ] );
        let $name = n.prepend($head);
    };
}

impl<'a, T> Node<'a, T> {
    /// Create a new empty list.
    pub fn new() -> Self {
        Node::Root
    }

    /// Create a new list by prepending `self` with `data`.
    pub fn prepend(&'a self, data: T) -> Self {
        Node::Head { data, tail: self }
    }

    /// Returns an iterator on this list.
    pub fn iter(&'a self) -> impl Iterator<Item = &'a T> {
        self
    }

    /// Run the given closure on each item from this list, starting from the end.
    pub fn for_each_rev<F>(&self, mut f: F)
    where
        F: FnMut(&T),
    {
        self.for_each_rev_inner(&mut f);
    }

    /// Same as `for_each_rev`, but takes a `&mut F` so it can more easily recurse.
    fn for_each_rev_inner<F>(&self, f: &mut F)
    where
        F: FnMut(&T),
    {
        if let &Node::Head { ref data, ref tail } = self {
            tail.for_each_rev_inner(f);
            f(data);
        }
    }

    /// Returns the next element in the list, if any.
    pub fn tail(&self) -> Option<&Self> {
        match self {
            Node::Root => None,
            Node::Head { tail, .. } => Some(tail),
        }
    }

    /// Returns the first data element in this list, if any.
    pub fn first(&self) -> Option<&T> {
        match self {
            Node::Root => None,
            Node::Head { data, .. } => Some(&data),
        }
    }

    /// Returns the length of this list.
    pub fn len(&self) -> usize {
        self.tail().map_or(0, |t| 1 + t.len())
    }

    /// Returns `true` if this list is empty.
    pub fn is_empty(&self) -> bool {
        match self {
            Node::Root => true,
            _ => false,
        }
    }

    /// Returns a sublist made by skipping the `n` first elements.
    ///
    /// Returns `None` if `n >= self.len()`.
    pub fn skip(&self, n: usize) -> Option<&Self> {
        match n {
            0 => Some(self),
            n => self.tail().and_then(|t| t.skip(n - 1)),
        }
    }

    /// Returns the data at index `n`.
    ///
    /// Returns `None` if `n >= self.len()`.
    pub fn get(&self, n: usize) -> Option<&T> {
        self.skip(n).and_then(Node::first)
    }

    /// Returns the data for the last item in this list.
    ///
    /// Returns `None` if `self` is empty.
    pub fn last(&self) -> Option<&T> {
        match self {
            Node::Root => None,
            Node::Head { data, tail } => Some(tail.last().unwrap_or(data)),
        }
    }

    /// Fold the given function over this list.
    ///
    /// Conceptually, runs the code:
    ///
    /// ```rust,ignore
    /// for data in self {
    ///     start = f(start, data);
    /// }
    /// start
    /// ```
    pub fn fold<F, S>(&self, start: S, mut f: F) -> S
    where
        F: FnMut(S, T) -> S,
        T: Clone,
    {
        match self {
            Node::Root => start,
            Node::Head { tail, data } => tail.fold(f(start, data.clone()), f),
        }
    }

    /// Reverse this list.
    ///
    /// This does not return a stacklist; instead, it runs `f` on a reversed version of `self`.
    pub fn reverse<F, R>(&self, f: F) -> R
    where
        F: for<'b> FnOnce(&'b Node<'b, T>) -> R,
        R: 'static,
        T: Clone,
    {
        fn reverse_inner<'b, T, F, R>(target: &Node<'b, T>, source: &Node<'b, T>, f: F) -> R
        where
            F: for<'c> FnOnce(&'c Node<'c, T>) -> R,
            R: 'static,
            T: Clone,
        {
            match source {
                Node::Root => f(target),
                Node::Head { data, tail } => reverse_inner(&target.prepend(data.clone()), tail, f),
            }
        }

        reverse_inner(&Node::Root, self, f)
    }

    /// Prepend all the elements from the given iterator, in reverse order.
    ///
    /// # Examples
    ///
    /// ```rust
    /// stack_list::make!(let a = [3, 4, 5]);
    /// assert_eq!(a.get(0), Some(&3));
    ///
    /// a.prepend_all_rev([2, 1].iter().copied(), |b| {
    ///     assert_eq!(b.get(0), Some(&1));
    /// });
    /// ```
    pub fn prepend_all_rev<I, F, R>(&self, mut i: I, f: F) -> R
    where
        I: Iterator<Item = T>,
        F: for<'b> FnOnce(&'b Node<'b, T>) -> R,
        R: 'static,
    {
        match i.next() {
            None => f(self),
            Some(x) => self.prepend(x).prepend_all_rev(i, f),
        }
    }

    /// Prepend all the elements from the given iterator.
    ///
    /// # Examples
    ///
    /// ```rust
    /// stack_list::make!(let a = [3, 4, 5]);
    /// assert_eq!(a.get(0), Some(&3));
    ///
    /// a.prepend_all([1, 2].iter().copied(), |b| {
    ///     assert_eq!(b.get(0), Some(&1));
    /// });
    /// ```
    pub fn prepend_all<I, F, R>(&self, i: I, f: F) -> R
    where
        I: DoubleEndedIterator<Item = T>,
        F: for<'b> FnOnce(&'b Node<'b, T>) -> R,
        R: 'static,
    {
        self.prepend_all_rev(i.rev(), f)
    }

    /// Build a stacklist using the items from the iterator in reverse order.
    ///
    /// Note: this does not return the stacklist. Instead, it calls the given closure
    /// with the generated list.
    pub fn from_rev_iterator<I, F, R>(i: I, f: F) -> R
    where
        I: Iterator<Item = T>,
        F: for<'b> FnOnce(&'b Node<'b, T>) -> R,
        R: 'static,
    {
        Node::prepend_all_rev(&Node::Root, i, f)
    }

    /// Build a stacklist using the items from the iterator.
    ///
    /// Note: this does not return the stacklist. Instead, it calls the given closure
    /// with the generated list.
    pub fn from_iterator<I, F, R>(i: I, f: F) -> R
    where
        I: DoubleEndedIterator<Item = T>,
        F: for<'b> FnOnce(&'b Node<'b, T>) -> R,
        R: 'static,
    {
        Node::from_rev_iterator(i.rev(), f)
    }
}

impl<'b, T> Iterator for &'b Node<'b, T> {
    type Item = &'b T;

    fn next(&mut self) -> Option<Self::Item> {
        match self {
            Node::Root => None,
            Node::Head { data, tail } => {
                *self = tail;
                Some(&data)
            }
        }
    }
}