1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//! Buffered display module for use with the [embedded_graphics] crate
//!
//! ```rust
//! # use ssd1306::test_helpers::I2cStub;
//! # let i2c = I2cStub;
//! use ssd1306::{prelude::*, mode::GraphicsMode, Builder};
//! use embedded_graphics::{
//!     fonts::Font6x8,
//!     pixelcolor::BinaryColor,
//!     prelude::*,
//!     primitives::{Circle, Line, Rectangle},
//! };
//!
//! let mut display: GraphicsMode<_> = Builder::new().connect_i2c(i2c).into();
//!
//! display.init().unwrap();
//! display.flush().unwrap();
//! display.draw(
//!     Line::new(Point::new(0, 0), Point::new(16, 16))
//!         .stroke(Some(BinaryColor::On))
//!         .into_iter(),
//! );
//! display.draw(
//!     Rectangle::new(Point::new(24, 0), Point::new(40, 16))
//!         .stroke(Some(BinaryColor::On))
//!         .into_iter(),
//! );
//! display.draw(
//!     Circle::new(Point::new(64, 8), 8)
//!         .stroke(Some(BinaryColor::On))
//!         .into_iter(),
//! );
//! display.draw(
//!     Font6x8::render_str("Hello Rust!")
//!         .stroke(Some(BinaryColor::On))
//!         .translate(Point::new(24, 24))
//!         .into_iter(),
//! );
//! display.flush().unwrap();
//! ```
//!
//! [embedded_graphics]: https://crates.io/crates/embedded_graphics

use hal::blocking::delay::DelayMs;
use hal::digital::v2::OutputPin;

use crate::displayrotation::DisplayRotation;
use crate::displaysize::DisplaySize;
use crate::interface::DisplayInterface;
use crate::mode::displaymode::DisplayModeTrait;
use crate::properties::DisplayProperties;
use crate::Error;

// TODO: Add to prelude
/// Graphics mode handler
pub struct GraphicsMode<DI>
where
    DI: DisplayInterface,
{
    properties: DisplayProperties<DI>,
    buffer: [u8; 1024],
}

impl<DI> DisplayModeTrait<DI> for GraphicsMode<DI>
where
    DI: DisplayInterface,
{
    /// Create new GraphicsMode instance
    fn new(properties: DisplayProperties<DI>) -> Self {
        GraphicsMode {
            properties,
            buffer: [0; 1024],
        }
    }

    /// Release all resources used by GraphicsMode
    fn release(self) -> DisplayProperties<DI> {
        self.properties
    }
}

impl<DI> GraphicsMode<DI>
where
    DI: DisplayInterface,
{
    /// Clear the display buffer. You need to call `disp.flush()` for any effect on the screen
    pub fn clear(&mut self) {
        self.buffer = [0; 1024];
    }

    /// Reset display
    // TODO: Move to a more appropriate place
    pub fn reset<RST, DELAY, PinE>(
        &mut self,
        rst: &mut RST,
        delay: &mut DELAY,
    ) -> Result<(), Error<(), PinE>>
    where
        RST: OutputPin<Error = PinE>,
        DELAY: DelayMs<u8>,
    {
        rst.set_high().map_err(Error::Pin)?;
        delay.delay_ms(1);
        rst.set_low().map_err(Error::Pin)?;
        delay.delay_ms(10);
        rst.set_high().map_err(Error::Pin)
    }

    /// Write out data to display
    pub fn flush(&mut self) -> Result<(), DI::Error> {
        let display_size = self.properties.get_size();

        // Ensure the display buffer is at the origin of the display before we send the full frame
        // to prevent accidental offsets
        let (display_width, display_height) = display_size.dimensions();
        self.properties
            .set_draw_area((0, 0), (display_width, display_height))?;

        match display_size {
            DisplaySize::Display128x64 => self.properties.draw(&self.buffer),
            DisplaySize::Display128x32 => self.properties.draw(&self.buffer[0..512]),
            DisplaySize::Display96x16 => self.properties.draw(&self.buffer[0..192]),
        }
    }

    /// Turn a pixel on or off. A non-zero `value` is treated as on, `0` as off. If the X and Y
    /// coordinates are out of the bounds of the display, this method call is a noop.
    pub fn set_pixel(&mut self, x: u32, y: u32, value: u8) {
        let (display_width, _) = self.properties.get_size().dimensions();
        let display_rotation = self.properties.get_rotation();

        let idx = match display_rotation {
            DisplayRotation::Rotate0 | DisplayRotation::Rotate180 => {
                if x >= display_width as u32 {
                    return;
                }
                ((y as usize) / 8 * display_width as usize) + (x as usize)
            }

            DisplayRotation::Rotate90 | DisplayRotation::Rotate270 => {
                if y >= display_width as u32 {
                    return;
                }
                ((x as usize) / 8 * display_width as usize) + (y as usize)
            }
        };

        if idx >= self.buffer.len() {
            return;
        }

        let (byte, bit) = match display_rotation {
            DisplayRotation::Rotate0 | DisplayRotation::Rotate180 => {
                let byte =
                    &mut self.buffer[((y as usize) / 8 * display_width as usize) + (x as usize)];
                let bit = 1 << (y % 8);

                (byte, bit)
            }
            DisplayRotation::Rotate90 | DisplayRotation::Rotate270 => {
                let byte =
                    &mut self.buffer[((x as usize) / 8 * display_width as usize) + (y as usize)];
                let bit = 1 << (x % 8);

                (byte, bit)
            }
        };

        if value == 0 {
            *byte &= !bit;
        } else {
            *byte |= bit;
        }
    }

    /// Display is set up in column mode, i.e. a byte walks down a column of 8 pixels from
    /// column 0 on the left, to column _n_ on the right
    pub fn init(&mut self) -> Result<(), DI::Error> {
        self.properties.init_column_mode()
    }

    /// Get display dimensions, taking into account the current rotation of the display
    pub fn get_dimensions(&self) -> (u8, u8) {
        self.properties.get_dimensions()
    }

    /// Set the display rotation
    pub fn set_rotation(&mut self, rot: DisplayRotation) -> Result<(), DI::Error> {
        self.properties.set_rotation(rot)
    }

    /// Turn the display on or off. The display can be drawn to and retains all
    /// of its memory even while off.
    pub fn display_on(&mut self, on: bool) -> Result<(), DI::Error> {
        self.properties.display_on(on)
    }
}

#[cfg(feature = "graphics")]
extern crate embedded_graphics;
#[cfg(feature = "graphics")]
use self::embedded_graphics::{
    drawable,
    pixelcolor::{
        raw::{RawData, RawU1},
        BinaryColor,
    },
    Drawing,
};

#[cfg(feature = "graphics")]
impl<DI> Drawing<BinaryColor> for GraphicsMode<DI>
where
    DI: DisplayInterface,
{
    fn draw<T>(&mut self, item_pixels: T)
    where
        T: IntoIterator<Item = drawable::Pixel<BinaryColor>>,
    {
        // Filter out pixels that are off the top left of the screen
        let on_screen_pixels = item_pixels
            .into_iter()
            .filter(|drawable::Pixel(point, _)| point.x >= 0 && point.y >= 0);

        for drawable::Pixel(point, color) in on_screen_pixels {
            // NOTE: The filter above means the coordinate conversions should never panic
            self.set_pixel(
                point.x as u32,
                point.y as u32,
                RawU1::from(color).into_inner(),
            );
        }
    }
}

#[cfg(test)]
mod tests {
    // TODO lol
}