1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
//! Conflict-Driven Clause Learning Search engine
#[cfg(feature = "clause_vivification")]
use super::vivify::vivify;
use {
    super::{
        conflict::handle_conflict,
        restart::{self, ProgressUpdate, RestartDecision, RestartIF, Restarter},
        Certificate, Solver, SolverEvent, SolverResult,
    },
    crate::{
        assign::{self, AssignIF, AssignStack, PropagateIF, VarManipulateIF, VarSelectIF},
        cdb::{ClauseDB, ClauseDBIF},
        processor::{EliminateIF, Eliminator},
        state::{Stat, State, StateIF},
        types::*,
    },
};

/// API to [`solve`](`crate::solver::SolveIF::solve`) SAT problems.
pub trait SolveIF {
    /// search an assignment.
    ///
    /// # Errors
    ///
    /// if solver becomes inconsistent by an internal error.
    fn solve(&mut self) -> SolverResult;
}

macro_rules! RESTART {
    ($asg: expr, $rst: expr) => {
        $asg.cancel_until($asg.root_level);
        $rst.handle(SolverEvent::Restart);
    };
}

impl SolveIF for Solver {
    /// # Examples
    ///
    /// ```
    /// use splr::*;
    ///
    /// let config = Config::from("tests/sample.cnf");
    /// if let Ok(mut s) = Solver::build(&config) {
    ///     let res = s.solve();
    ///     assert!(res.is_ok());
    ///     assert_ne!(res.unwrap(), Certificate::UNSAT);
    /// }
    ///```
    fn solve(&mut self) -> SolverResult {
        let Solver {
            ref mut asg,
            ref mut cdb,
            ref mut elim,
            ref mut rst,
            ref mut state,
        } = self;
        if cdb.check_size().is_err() {
            return Err(SolverError::OutOfMemory);
        }
        asg.num_asserted_vars = asg.stack_len();
        state.progress_header();
        state.progress(asg, cdb, elim, rst);
        state.flush("");
        state.flush("Preprocessing stage: ");
        if 0 < asg.stack_len() {
            elim.eliminate_satisfied_clauses(asg, cdb, false);
        }
        if elim.enable {
            const USE_PRE_PROCESSING_ELIMINATOR: bool = true;

            //
            //## Propagate all trivial literals (an essential step)
            //
            // Set appropriate phases and push all the unit clauses to assign stack.
            // To do so, we use eliminator's occur list.
            // Thus we have to call `activate` and `prepare` firstly, to build occur lists.
            // Otherwise all literals are assigned wrongly.
            state.flush("phasing...");
            elim.activate();
            elim.prepare(asg, cdb, true);
            for vi in 1..=asg.num_vars {
                if asg.assign(vi).is_some() {
                    continue;
                }
                if let Some((p, m)) = elim.stats(vi) {
                    // We can't call `asg.assign_at_root_level(l)` even if p or m == 0.
                    // This means we can't pick `!l`.
                    // This becomes a problem in the case of incremental solving.
                    #[cfg(not(feature = "incremental_solver"))]
                    {
                        if m == 0 {
                            let l = Lit::from_assign(vi, true);
                            if asg.assign_at_root_level(l).is_err() {
                                return Ok(Certificate::UNSAT);
                            }
                        } else if p == 0 {
                            let l = Lit::from_assign(vi, false);
                            if asg.assign_at_root_level(l).is_err() {
                                return Ok(Certificate::UNSAT);
                            }
                        }
                    }
                    asg.var_mut(vi).set(Flag::PHASE, m < p);
                    elim.enqueue_var(asg, vi, false);
                }
            }
            //
            //## Run eliminator
            //
            if USE_PRE_PROCESSING_ELIMINATOR {
                state.flush("simplifying...");
                if elim.simplify(asg, cdb, rst, state).is_err() {
                    // Why inconsistent? Because the CNF contains a conflict, not an error!
                    // Or out of memory.
                    state.progress(asg, cdb, elim, rst);
                    if cdb.check_size().is_err() {
                        return Err(SolverError::OutOfMemory);
                    }
                    return Ok(Certificate::UNSAT);
                }
                for vi in 1..=asg.num_vars {
                    if asg.assign(vi).is_some() || asg.var(vi).is(Flag::ELIMINATED) {
                        continue;
                    }
                    match elim.stats(vi) {
                        Some((_, 0)) => (),
                        Some((0, _)) => (),
                        Some((p, m)) if m * 10 < p => asg.var_mut(vi).turn_on(Flag::PHASE),
                        Some((p, m)) if p * 10 < m => asg.var_mut(vi).turn_off(Flag::PHASE),
                        _ => (),
                    }
                }
                for vi in elim.sorted_iterator() {
                    asg.set_activity(*vi, 0.0);
                }
                asg.rebuild_order();
            }
            elim.stop(asg, cdb);
        }

        //
        //## Search
        //
        state.progress(asg, cdb, elim, rst);
        let answer = search(asg, cdb, elim, rst, state);
        state.progress(asg, cdb, elim, rst);
        match answer {
            Ok(true) => {
                // As a preparation for incremental solving, we need to backtrack to the
                // root level. So all assignments, including assignments to eliminated vars,
                // are stored in an extra storage. It has the same type of `AssignStack::assign`.
                let model = asg.extend_model(cdb, elim.eliminated_lits());
                #[cfg(debug)]
                {
                    if let Some(cid) = cdb.validate(&model, true) {
                        panic!(
                            "Level {} generated assignment({:?}) falsifies {}:{:?}",
                            asg.decision_level(),
                            cdb.validate(&model, false).is_none(),
                            cid,
                            "asg.dump(&cdb[cid])",
                        );
                    }
                }

                // Run validator on the extended model.
                if cdb.validate(&model, false).is_some() {
                    return Err(SolverError::SolverBug);
                }

                // map `Option<bool>` to `i32`, and remove the dummy var at the head.
                let vals = asg
                    .var_iter()
                    .skip(1)
                    .map(|v| i32::from(Lit::from((v.index, model[v.index]))))
                    .collect::<Vec<i32>>();

                // As a preparation for incremental solving, turn flags off.
                for v in asg.var_iter_mut().skip(1) {
                    if v.is(Flag::ELIMINATED) {
                        v.turn_off(Flag::ELIMINATED);
                    }
                }
                RESTART!(asg, rst);
                Ok(Certificate::SAT(vals))
            }
            Ok(false) | Err(SolverError::NullLearnt) => {
                RESTART!(asg, rst);
                Ok(Certificate::UNSAT)
            }
            Err(e) => {
                RESTART!(asg, rst);
                Err(e)
            }
        }
    }
}

/// main loop; returns `Ok(true)` for SAT, `Ok(false)` for UNSAT.
fn search(
    asg: &mut AssignStack,
    cdb: &mut ClauseDB,
    elim: &mut Eliminator,
    rst: &mut Restarter,
    state: &mut State,
) -> Result<bool, SolverError> {
    let mut a_decision_was_made = false;
    let mut last_core = 0;
    let mut next_progress = 10_000;
    let mut best_asserted = state.target.num_of_variables;

    #[cfg(feature = "var_staging")]
    let mut parity = false;

    #[cfg(feature = "Luby_restart")]
    rst.update(ProgressUpdate::Luby);

    while 0 < asg.derefer(assign::property::Tusize::NumUnassignedVar) {
        if !asg.remains() {
            let lit = asg.select_decision_literal();
            asg.assign_by_decision(lit);
            a_decision_was_made = true;
        }
        let ci = asg.propagate(cdb);
        if !ci.is_none() {
            if asg.decision_level() == asg.root_level {
                analyze_final(asg, state, &cdb[ci]);
                return Ok(false);
            }
            asg.update_rewards();
            cdb.update_rewards();
            handle_conflict(asg, cdb, elim, rst, state, ci)?;
            rst.update(ProgressUpdate::ASG(
                asg.derefer(assign::property::Tusize::NumUnassignedVar),
            ));
            if rst.restart() == Some(RestartDecision::Force) {
                if let Some(new_cycle) = rst.stabilize() {
                    RESTART!(asg, rst);
                    let block_level = rst.derefer(restart::property::Tusize::TriggerLevel);
                    let num_cycle = rst.derefer(restart::property::Tusize::NumCycle);
                    let num_unreachable = asg.derefer(assign::property::Tusize::NumUnreachableVar);
                    asg.update_activity_decay(if new_cycle { None } else { Some(block_level) });

                    #[cfg(feature = "var_staging")]
                    {
                        parity = !parity;
                        asg.select_staged_vars(None, parity);
                    }

                    if last_core != num_unreachable || 0 == num_unreachable {
                        state.log(
                            asg.num_conflict,
                            format!(
                                "#cycle:{:>5}, core:{:>9}, level:{:>9},/cpr:{:>9.2}",
                                num_cycle,
                                num_unreachable,
                                block_level,
                                asg.refer(assign::property::TEma::PPC).get(),
                            ),
                        );
                        last_core = num_unreachable;
                    }

                    if cdb.reduce(asg, asg.num_conflict) {
                        // Simplification has been postponed because chronoBT was used.
                        // `elim.to_simplify` is increased much in particular
                        // when vars are asserted or learnts are small.
                        // We don't need to count the number of asserted vars.
                        #[cfg(feature = "clause_vivification")]
                        if vivify(asg, cdb, elim, state).is_err() {
                            // return Err(SolverError::UndescribedError);
                            analyze_final(asg, state, &cdb[ci]);
                            return Ok(false);
                        }
                        if state.config.c_ip_int <= elim.to_simplify as usize {
                            elim.activate();
                            elim.simplify(asg, cdb, rst, state)?;
                        }
                    }
                    if next_progress < asg.num_conflict {
                        state.progress(asg, cdb, elim, rst);
                        next_progress = asg.num_conflict + 10_000;
                    }
                } else {
                    RESTART!(asg, rst);
                }
            }
            // By simplification, we may get further solutions.
            if asg.decision_level() == asg.root_level && asg.num_asserted_vars < asg.stack_len() {
                asg.num_asserted_vars = asg.stack_len();
            }
            if a_decision_was_made {
                a_decision_was_made = false;
            } else {
                state[Stat::NoDecisionConflict] += 1;
            }
            if let Some(na) = asg.best_assigned() {
                if na < best_asserted {
                    state.flush("");
                    state.flush(format!("unreachable core: {}", na));
                    rst.handle(SolverEvent::ShrinkCore);
                    best_asserted = na;
                }
            }
            if asg.num_conflict % (10 * state.reflection_interval) == 0 {
                #[cfg(feature = "strategy_adaptation")]
                adapt_modules(asg, rst, state);

                if let Some(p) = state.elapsed() {
                    if 1.0 <= p {
                        return Err(SolverError::TimeOut);
                    }
                } else {
                    return Err(SolverError::UndescribedError);
                }
            }
        }
    }
    Ok(true)
}

#[cfg(feature = "strategy_adaptation")]
fn adapt_modules(asg: &mut AssignStack, rst: &mut Restarter, state: &mut State) {
    let asg_num_conflict = asg.num_conflict;
    if 10 * state.reflection_interval == asg_num_conflict {
        // Need to call it before `cdb.adapt_to`
        // 'decision_level == 0' is required by `cdb.adapt_to`.
        RESTART!(asg, rst);
        state.select_strategy(asg, cdb);
    }
    #[cfg(feature = "boundary_check")]
    debug_assert!(state.strategy.1 != asg_num_conflict || 0 == asg.decision_level());

    asg.handle(SolverEvent::Adapt(state.strategy, asg_num_conflict));
    cdb.handle(SolverEvent::Adapt(state.strategy, asg_num_conflict));
    rst.handle(SolverEvent::Adapt(state.strategy, asg_num_conflict));
}

fn analyze_final(asg: &mut AssignStack, state: &mut State, c: &Clause) {
    let mut seen = vec![false; asg.num_vars + 1];
    state.conflicts.clear();
    if asg.decision_level() == 0 {
        return;
    }
    for l in &c.lits {
        let vi = l.vi();
        if 0 < asg.level(vi) {
            asg.var_mut(vi).turn_on(Flag::CA_SEEN);
        }
    }
    let end = if asg.decision_level() <= asg.root_level {
        asg.stack_len()
    } else {
        asg.len_upto(asg.root_level)
    };
    for l in asg.stack_range(asg.len_upto(0)..end) {
        let vi = l.vi();
        if seen[vi] {
            if asg.reason(vi) == AssignReason::default() {
                state.conflicts.push(!*l);
            } else {
                let level = asg.level_ref();
                for l in &c[(c.len() != 2) as usize..] {
                    let vj = l.vi();
                    if 0 < level[vj] {
                        seen[vj] = true;
                    }
                }
            }
        }
        seen[vi] = false;
    }
}