1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#![allow(clippy::many_single_char_names)]

use num_traits::{AsPrimitive, FromPrimitive, PrimInt, ToPrimitive, Unsigned};
use packedvec::PackedVec;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use vob::Vob;

/// A SparseVec efficiently encodes a two-dimensional matrix of integers. The input matrix must be
/// encoded as a one-dimensional vector of integers with a row-length. Given an "empty" value, the
/// SparseVec uses row displacement to compress that value as described in "Storing a sparse table"
/// by Robert Endre Tarjan and Andrew Chi-Chih Yao. Afterwards it encodes the result further using
/// a PackedVec.
///
/// # Example
///
/// ```
/// extern crate sparsevec;
/// use sparsevec::SparseVec;
///
/// fn main() {
///     let v:Vec<usize> = vec![1,0,0,0,
///                             0,0,7,8,
///                             9,0,0,3];
///     let sv = SparseVec::from(&v, 0, 4);
///     assert_eq!(sv.get(0,0).unwrap(), 1);
///     assert_eq!(sv.get(1,2).unwrap(), 7);
///     assert_eq!(sv.get(2,3).unwrap(), 3);
/// }
/// ```
///
/// # How it works
///
/// Let's take as an example the two-dimensional vector
/// ```text
/// 1 0 0
/// 2 0 0
/// 3 0 0
/// 0 0 4
/// ```
/// represented as a one dimensional vector `v = [1,0,0,2,0,0,3,0,0,0,0,4]` with row-length 3.
/// Storing this vector in memory is wasteful as the majority of its elements is 0. We can compress
/// this vector using row displacement, which merges all rows into a vector such that non-zero
/// entries are never mapped to the same position. For the above example, this would result in the
/// compressed vector `c = [1,2,3,0,4]`:
/// ```text
/// 1 0 0
///   2 0 0
///     3 0 0
///     0 0 4
/// ---------
/// 1 2 3 0 4
/// ```
/// To retrieve values from the compressed vector, we need a displacement vector, which
/// describes how much each row was shifted during the compression. For the above example, the
/// displacement vector would be `d = [0, 1, 2, 2]`. In order to retrieve the value at
/// position (2, 0), we can calculate its compressed position with `pos = d[row] + col`:
/// ```text
/// pos = d[2] + 0 // =2
/// value = c[pos] // =3
/// ```
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug)]
pub struct SparseVec<T> {
    displacement: Vec<usize>, // Displacement vector
    row_length: usize,        // Row length of the input matrix
    empty_val: T,             // Value considered "empty"
    empties: Vob<u64>,        // Mapping of "empty" cells
    data: PackedVec<T, u64>,  // Compressed matrix
}

impl<T: Clone + Copy + PartialEq> SparseVec<T>
where
    T: AsPrimitive<u64> + FromPrimitive + Ord + PrimInt + ToPrimitive + Unsigned,
    u64: AsPrimitive<T>,
{
    /// Constructs a new SparseVec from a `Vec` of unsigned integers where `empty_val` describes
    /// the values to be compressed and `row_length` the element size per row in the original
    /// two-dimensional vector.
    ///
    /// # Examples
    /// ```
    /// use sparsevec::SparseVec;
    /// let v:Vec<usize> = vec![1,2,3,4,5,6,7,8];
    /// let sv = SparseVec::from(&v, 0, 4);
    /// assert_eq!(sv.get(1,2).unwrap(), 7);
    /// ```
    pub fn from(v: &[T], empty_val: T, row_length: usize) -> SparseVec<T> {
        if v.is_empty() {
            return SparseVec {
                displacement: Vec::new(),
                row_length: 0,
                empty_val,
                empties: Vob::<u64>::new_with_storage_type(0),
                data: PackedVec::<T, u64>::new_with_storaget(v.to_vec()),
            };
        }

        // Sort rows by amount of empty values as suggested in
        // "Smaller  faster  table  driven  parser" by S. F. Zeigler
        let s = sort(v, empty_val, row_length);
        let (c, d) = compress(v, &s, empty_val, row_length);
        let e = calc_empties(v, empty_val);
        let pv = PackedVec::<T, u64>::new_with_storaget(c);
        SparseVec {
            displacement: d,
            row_length,
            empty_val,
            empties: e,
            data: pv,
        }
    }

    /// Returns the value of the element at position `(r,c)`, where `r` is a row and `c` is a
    /// column. Returns `None` if out of bounds.
    ///
    /// # Examples
    /// ```
    /// use sparsevec::SparseVec;
    /// let v:Vec<usize> = vec![1,2,3,4,5,6,7,8];
    /// let sv = SparseVec::from(&v, 0, 4);
    /// assert_eq!(sv.get(1,2).unwrap(), 7);
    /// ```
    pub fn get(&self, r: usize, c: usize) -> Option<T> {
        let k = r * self.row_length + c;
        match self.empties.get(k) {
            None => None,
            Some(true) => Some(self.empty_val),
            Some(false) => self.data.get(self.displacement[r] + c),
        }
    }

    /// Returns the number of elements of the original input vector.
    /// # Examples
    /// ```
    /// use sparsevec::SparseVec;
    /// let v = vec![1,2,3,4];
    /// let sv = SparseVec::from(&v, 0 as usize, 2);
    /// assert_eq!(sv.len(), 4);
    /// ```
    pub fn len(&self) -> usize {
        self.empties.len()
    }

    /// Returns true if the SparseVec has no elements or false otherwise.
    /// # Examples
    /// ```
    /// use sparsevec::SparseVec;
    /// let v = Vec::new();
    /// let sv = SparseVec::from(&v, 0 as usize, 0);
    /// assert_eq!(sv.is_empty(), true);
    /// ```
    pub fn is_empty(&self) -> bool {
        self.empties.is_empty()
    }
}

fn calc_empties<T: PartialEq>(vec: &[T], empty_val: T) -> Vob<u64> {
    let mut vob = Vob::<u64>::from_elem_with_storage_type(false, vec.len());
    for (i, v) in vec.iter().enumerate() {
        if *v == empty_val {
            vob.set(i, true);
        }
    }
    vob
}

fn compress<T: Clone + Copy + PartialEq>(
    vec: &[T],
    sorted: &[usize],
    empty_val: T,
    row_length: usize,
) -> (Vec<T>, Vec<usize>) {
    let mut r = Vec::new(); // Result vector
    r.resize(row_length, empty_val);

    let mut dv = Vec::new(); // displacement vector
    dv.resize(sorted.len(), 0);

    for s in sorted {
        let slice = &vec[s * row_length..(s + 1) * row_length];
        let mut d = 0; // displacement value
        loop {
            if fits(slice, &r, d, empty_val) {
                apply(slice, &mut r, d, empty_val);
                dv[*s] = d;
                break;
            } else {
                d += 1;
                if d + row_length > r.len() {
                    r.resize(d + row_length, empty_val); // increase result vector size
                }
            }
        }
    }
    (r, dv)
}

fn fits<T: PartialEq>(v: &[T], target: &[T], d: usize, empty_val: T) -> bool {
    for i in 0..v.len() {
        if v[i] != empty_val && target[d + i] != empty_val && target[d + i] != v[i] {
            return false;
        }
    }
    true
}

fn apply<T: Copy + PartialEq>(v: &[T], target: &mut [T], d: usize, empty_val: T) {
    for i in 0..v.len() {
        if v[i] != empty_val {
            target[d + i] = v[i]
        }
    }
}

fn sort<T: PartialEq>(v: &[T], empty_val: T, row_length: usize) -> Vec<usize>
where
    T: PartialEq<T>,
{
    let mut o: Vec<usize> = (0..v.len() / row_length).collect();
    o.sort_by_key(|x| {
        v[(x * row_length)..((x + 1) * row_length)]
            .iter()
            .filter(|y| *y == &empty_val)
            .count()
    });
    o
}

#[cfg(test)]
mod test {
    extern crate rand;
    use super::*;

    #[test]
    fn test_sparsevec() {
        let v = vec![0, 1, 2, 3, 4, 0, 0, 0, 0, 0, 5, 6, 0, 7, 8, 0];
        let sv = SparseVec::from(&v, 0 as usize, 4);
        assert_eq!(sv.get(0, 0).unwrap(), 0);
        assert_eq!(sv.get(0, 1).unwrap(), 1);
        assert_eq!(sv.get(0, 2).unwrap(), 2);
        assert_eq!(sv.get(0, 3).unwrap(), 3);
        assert_eq!(sv.get(1, 0).unwrap(), 4);
        assert_eq!(sv.get(1, 1).unwrap(), 0);
        assert_eq!(sv.get(2, 2).unwrap(), 5);
        assert_eq!(sv.get(2, 3).unwrap(), 6);
        assert_eq!(sv.get(3, 0).unwrap(), 0);
        assert_eq!(sv.get(3, 1).unwrap(), 7);
        assert_eq!(sv.get(3, 2).unwrap(), 8);
        assert_eq!(sv.get(3, 3).unwrap(), 0);
    }

    #[test]
    fn test_sparsevec_empty() {
        let v = Vec::new();
        let sv = SparseVec::from(&v, 0 as usize, 0);
        assert_eq!(sv.len(), 0);
        assert_eq!(sv.get(0, 0), None);
        assert_eq!(sv.is_empty(), true);
    }

    fn random_sparsevec(row_length: usize) {
        const LENGTH: usize = 2000;

        let mut v: Vec<u16> = Vec::with_capacity(LENGTH);
        for _ in 0..LENGTH {
            if rand::random::<u8>() < 128 {
                v.push(0);
            } else {
                v.push(rand::random::<u16>() % 1000);
            }
        }

        let sv = SparseVec::from(&v, 0, row_length);
        let rows = LENGTH / row_length;
        for r in 0..rows {
            for c in 0..row_length {
                assert_eq!(sv.get(r, c).unwrap(), v[r * row_length + c]);
            }
        }
    }

    #[test]
    fn random_vec() {
        random_sparsevec(5);
        random_sparsevec(10);
        random_sparsevec(20);
        random_sparsevec(50);
        random_sparsevec(100);
    }

    #[test]
    fn test_sparsevec_compress_same_values() {
        let v = vec![0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 0, 0, 1, 2, 0];

        let s: Vec<usize> = (0..v.len() / 4).collect();
        let (c, d) = compress(&v, &s, 0 as usize, 4);
        assert_eq!(c, vec![0, 1, 2, 3, 0]);
        assert_eq!(d, vec![0, 0, 1, 0]);

        let sv = SparseVec::from(&v, 0 as usize, 4);
        assert_eq!(sv.get(0, 0).unwrap(), 0);
        assert_eq!(sv.get(0, 1).unwrap(), 1);
        assert_eq!(sv.get(0, 2).unwrap(), 2);
        assert_eq!(sv.get(0, 3).unwrap(), 3);
        assert_eq!(sv.get(1, 0).unwrap(), 0);
        assert_eq!(sv.get(1, 1).unwrap(), 1);
        assert_eq!(sv.get(2, 0).unwrap(), 1);
        assert_eq!(sv.get(2, 1).unwrap(), 2);
        assert_eq!(sv.get(2, 2).unwrap(), 3);
        assert_eq!(sv.get(2, 3).unwrap(), 0);
        assert_eq!(sv.get(3, 0).unwrap(), 0);
        assert_eq!(sv.get(3, 1).unwrap(), 1);
        assert_eq!(sv.get(3, 2).unwrap(), 2);
        assert_eq!(sv.get(3, 3).unwrap(), 0);
    }

    #[test]
    fn test_sort_function() {
        let v = vec![1, 0, 0, 0, 8, 9, 0, 0, 5, 6, 7, 0, 1, 2, 3, 4];
        let s = sort(&v, 0, 4);
        assert_eq!(s, [3, 2, 1, 0]);

        let v = vec![1, 0, 1, 0, 0, 1, 0, 0, 8, 9, 0, 0, 0, 2, 3, 4];
        let s = sort(&v, 0, 4);
        assert_eq!(s, [3, 0, 2, 1]);
    }
}