1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
use std;

const MAX: u32 = 0x_8000_0000;

/// Encapsulates a zone's serial number.
///
/// `SerialNumber` uses **sequence space arithmetic**, defined in [RFC
/// 1982](https://tools.ietf.org/html/rfc1982). Sequence space arithmetic
/// defines the *addition* and *comparison* operations such that the serial
/// number wraps on overflow while maintaining an intuitive and well defined
/// meaning for the operations' results.
///
/// # Examples
///
/// ```
/// use sparkle::SerialNumber;
///
/// let x = SerialNumber(0);
/// assert!(x < x + SerialNumber(1));
///
/// let x = SerialNumber(0x_ffff_ffff);
/// assert!(x < x + SerialNumber(1));
/// ```
///
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct SerialNumber(pub u32);

impl SerialNumber {
    pub fn as_u32(&self) -> u32 {
        self.0
    }
}

impl std::fmt::Display for SerialNumber {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
        self.0.fmt(f)
    }
}

impl From<SerialNumber> for u32 {
    fn from(x: SerialNumber) -> Self {
        x.0
    }
}

impl PartialOrd for SerialNumber {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {

        const MAX: u32 = 0x_8000_0000;

        let i1 = self.0; // same name used in RFC 1982
        let i2 = other.0; // same name used in RFC 1982

        if i1 == i2 {
            Some(std::cmp::Ordering::Equal)
        } else if (i1 < i2 && i2 - i1 < MAX) || (i1 > i2 && i1 - i2 > MAX) {
            Some(std::cmp::Ordering::Less)
        } else if (i1 < i2 && i2 - i1 > MAX) || (i1 > i2 && i1 - i2 < MAX) {
            Some(std::cmp::Ordering::Greater)
        } else {
            debug_assert!((i1 < i2 && i2 - i1 == 0x_8000_0000) || (i1 > i2 && i1 - i2 == 0x_8000_0000));

            // According to RFC 1982, section 3.2, implementations are free to
            // define any result for this condition.
            //
            // > Thus the problem case is left undefined, implementations are
            // free to return either result, or to flag an error, and users must
            // take care not to depend on any particular outcome. <

            None
        }
    }
}

impl std::ops::Add for SerialNumber {
    type Output = Self;
    fn add(self, other: Self) -> Self::Output {
        debug_assert!(other.0 < MAX);
        SerialNumber(self.0.wrapping_add(other.0))
    }
}

impl std::ops::AddAssign for SerialNumber {
    fn add_assign(&mut self, other: Self) {
        debug_assert!(other.0 < MAX);
        self.0 = self.0.wrapping_add(other.0);
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn serial_number_display() {
        let got = format!("{}", SerialNumber(1234));
        let expected = "1234";
        assert_eq!(got, expected);
    }

    #[test]
    fn u32_from_serial_number() {
        let x = SerialNumber(1234);
        let got = u32::from(x);
        let expected = 1234;
        assert_eq!(got, expected);
    }

    #[test]
    fn serial_number_partial_cmp() {
        use std::cmp::Ordering::*;

        let f = |x, y| SerialNumber(x).partial_cmp(&SerialNumber(y));

        // Equality cases.

        assert_eq!(f(0, 0), Some(Equal));
        assert_eq!(f(1, 1), Some(Equal));
        assert_eq!(f(0x_7fff_ffff, 0x_7fff_ffff), Some(Equal));
        assert_eq!(f(0x_8000_0000, 0x_8000_0000), Some(Equal));
        assert_eq!(f(0x_ffff_ffff, 0x_ffff_ffff), Some(Equal));

        // Unequal-but-defined cases.

        assert_eq!(f(0, 1), Some(Less));
        assert_eq!(f(1, 0), Some(Greater));

        assert_eq!(f(0, 44), Some(Less));
        assert_eq!(f(44, 0), Some(Greater));

        assert_eq!(f(0, 100), Some(Less));
        assert_eq!(f(100, 0), Some(Greater));

        assert_eq!(f(44, 100), Some(Less));
        assert_eq!(f(100, 44), Some(Greater));

        assert_eq!(f(0x_ffff_ffff, 0x_0000_0000), Some(Less));
        assert_eq!(f(0x_0000_0000, 0x_ffff_ffff), Some(Greater));

        assert_eq!(f(0x_0000_0000, 0x_7fff_ffff), Some(Less));
        assert_eq!(f(0x_7fff_ffff, 0x_0000_0000), Some(Greater));

        assert_eq!(f(0x_0000_0001, 0x_8000_0000), Some(Less));
        assert_eq!(f(0x_8000_0000, 0x_0000_0001), Some(Greater));

        assert_eq!(f(0x_4000_0000, 0x_bfff_ffff), Some(Less));
        assert_eq!(f(0x_bfff_ffff, 0x_4000_0000), Some(Greater));

        // Undefined cases.

        assert_eq!(f(0x_0000_0000, 0x_8000_0000), None);
        assert_eq!(f(0x_8000_0000, 0x_0000_0000), None);

        assert_eq!(f(0x_0000_0001, 0x_8000_0001), None);
        assert_eq!(f(0x_8000_0001, 0x_0000_0001), None);

        assert_eq!(f(0x_4000_0000, 0x_c000_0000), None);
        assert_eq!(f(0x_c000_0000, 0x_4000_0000), None);

        assert_eq!(f(0x_7fff_ffff, 0x_ffff_ffff), None);
        assert_eq!(f(0x_ffff_ffff, 0x_7fff_ffff), None);
    }

    #[test]
    fn serial_number_add() {
        let f = |x, y| SerialNumber(x) + SerialNumber(y);
        assert_eq!(f(0, 0), SerialNumber(0));
        assert_eq!(f(0, 1), SerialNumber(1));
        assert_eq!(f(0, 42), SerialNumber(42));
        assert_eq!(f(0, 0x_7fff_ffff), SerialNumber(0x_7fff_ffff));
        assert_eq!(f(0x_ffff_ffff, 1), SerialNumber(0));
        assert_eq!(f(0x_ffff_ffff, 2), SerialNumber(1));
        assert_eq!(f(0x_ffff_ffff, 0x_7fff_ffff), SerialNumber(0x_7fff_fffe));
    }

    #[test]
    fn serial_number_add_assign() {
        let f = |x, y| {
            let mut x = SerialNumber(x);
            x += SerialNumber(y);
            x
        };
        assert_eq!(f(0, 0), SerialNumber(0));
        assert_eq!(f(0, 1), SerialNumber(1));
        assert_eq!(f(0, 42), SerialNumber(42));
        assert_eq!(f(0, 0x_7fff_ffff), SerialNumber(0x_7fff_ffff));
        assert_eq!(f(0x_ffff_ffff, 1), SerialNumber(0));
        assert_eq!(f(0x_ffff_ffff, 2), SerialNumber(1));
        assert_eq!(f(0x_ffff_ffff, 0x_7fff_ffff), SerialNumber(0x_7fff_fffe));
    }
}