1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
//! "Edwards25519" elliptic curve group.

use crate::{c2_Element, c2_Scalar, Group};
use alloc::vec::Vec;
use curve25519_dalek::{constants::ED25519_BASEPOINT_POINT, edwards::CompressedEdwardsY};
use hkdf::Hkdf;
use rand_core::{CryptoRng, RngCore};
use sha2::{Digest, Sha256};

/// Ed25519 elliptic curve group.
#[derive(Debug, PartialEq, Eq)]
pub struct Ed25519Group;

impl Group for Ed25519Group {
    type Scalar = c2_Scalar;
    type Element = c2_Element;
    type TranscriptHash = Sha256;

    fn name() -> &'static str {
        "Ed25519"
    }

    fn const_m() -> c2_Element {
        // python -c "import binascii, spake2; b=binascii.hexlify(spake2.ParamsEd25519.M.to_bytes()); print(', '.join(['0x'+b[i:i+2] for i in range(0,len(b),2)]))"
        // 15cfd18e385952982b6a8f8c7854963b58e34388c8e6dae891db756481a02312
        CompressedEdwardsY([
            0x15, 0xcf, 0xd1, 0x8e, 0x38, 0x59, 0x52, 0x98, 0x2b, 0x6a, 0x8f, 0x8c, 0x78, 0x54,
            0x96, 0x3b, 0x58, 0xe3, 0x43, 0x88, 0xc8, 0xe6, 0xda, 0xe8, 0x91, 0xdb, 0x75, 0x64,
            0x81, 0xa0, 0x23, 0x12,
        ])
        .decompress()
        .unwrap()
    }

    fn const_n() -> c2_Element {
        // python -c "import binascii, spake2; b=binascii.hexlify(spake2.ParamsEd25519.N.to_bytes()); print(', '.join(['0x'+b[i:i+2] for i in range(0,len(b),2)]))"
        // f04f2e7eb734b2a8f8b472eaf9c3c632576ac64aea650b496a8a20ff00e583c3
        CompressedEdwardsY([
            0xf0, 0x4f, 0x2e, 0x7e, 0xb7, 0x34, 0xb2, 0xa8, 0xf8, 0xb4, 0x72, 0xea, 0xf9, 0xc3,
            0xc6, 0x32, 0x57, 0x6a, 0xc6, 0x4a, 0xea, 0x65, 0x0b, 0x49, 0x6a, 0x8a, 0x20, 0xff,
            0x00, 0xe5, 0x83, 0xc3,
        ])
        .decompress()
        .unwrap()
    }

    fn const_s() -> c2_Element {
        // python -c "import binascii, spake2; b=binascii.hexlify(spake2.ParamsEd25519.S.to_bytes()); print(', '.join(['0x'+b[i:i+2] for i in range(0,len(b),2)]))"
        // 6f00dae87c1be1a73b5922ef431cd8f57879569c222d22b1cd71e8546ab8e6f1
        CompressedEdwardsY([
            0x6f, 0x00, 0xda, 0xe8, 0x7c, 0x1b, 0xe1, 0xa7, 0x3b, 0x59, 0x22, 0xef, 0x43, 0x1c,
            0xd8, 0xf5, 0x78, 0x79, 0x56, 0x9c, 0x22, 0x2d, 0x22, 0xb1, 0xcd, 0x71, 0xe8, 0x54,
            0x6a, 0xb8, 0xe6, 0xf1,
        ])
        .decompress()
        .unwrap()
    }

    fn hash_to_scalar(s: &[u8]) -> c2_Scalar {
        ed25519_hash_to_scalar(s)
    }

    fn random_scalar<T>(cspring: &mut T) -> c2_Scalar
    where
        T: RngCore + CryptoRng,
    {
        c2_Scalar::random(cspring)
    }

    fn scalar_neg(s: &c2_Scalar) -> c2_Scalar {
        -s
    }

    fn element_to_bytes(s: &c2_Element) -> Vec<u8> {
        s.compress().as_bytes().to_vec()
    }

    fn element_length() -> usize {
        32
    }

    fn bytes_to_element(b: &[u8]) -> Option<c2_Element> {
        if b.len() != 32 {
            return None;
        }

        let mut bytes = [0u8; 32];
        bytes.copy_from_slice(b);

        let cey = CompressedEdwardsY(bytes);
        cey.decompress()
    }

    fn basepoint_mult(s: &c2_Scalar) -> c2_Element {
        ED25519_BASEPOINT_POINT * s
    }
    fn scalarmult(e: &c2_Element, s: &c2_Scalar) -> c2_Element {
        e * s
    }

    fn add(a: &c2_Element, b: &c2_Element) -> c2_Element {
        a + b
    }
}

fn ed25519_hash_to_scalar(s: &[u8]) -> c2_Scalar {
    //c2_Scalar::hash_from_bytes::<Sha512>(&s)
    // spake2.py does:
    //  h = HKDF(salt=b"", ikm=s, hash=SHA256, info=b"SPAKE2 pw", len=32+16)
    //  i = int(h, 16)
    //  i % q

    let mut okm = [0u8; 32 + 16];
    Hkdf::<Sha256>::new(Some(b""), s)
        .expand(b"SPAKE2 pw", &mut okm)
        .unwrap();
    //println!("expanded:   {}{}", "................................", okm.iter().to_hex()); // ok

    let mut reducible = [0u8; 64]; // little-endian
    for (i, x) in okm.iter().enumerate().take(32 + 16) {
        reducible[32 + 16 - 1 - i] = *x;
    }
    //println!("reducible:  {}", reducible.iter().to_hex());
    c2_Scalar::from_bytes_mod_order_wide(&reducible)
    //let reduced = c2_Scalar::reduce(&reducible);
    //println!("reduced:    {}", reduced.as_bytes().to_hex());
    //println!("done");
    //reduced
}

/// Hash `idA` and `idB` identities.
pub(crate) fn hash_ab(
    password_vec: &[u8],
    id_a: &[u8],
    id_b: &[u8],
    first_msg: &[u8],
    second_msg: &[u8],
    key_bytes: &[u8],
) -> Vec<u8> {
    assert_eq!(first_msg.len(), 32);
    assert_eq!(second_msg.len(), 32);
    // the transcript is fixed-length, made up of 6 32-byte values:
    // byte 0-31   : sha256(pw)
    // byte 32-63  : sha256(idA)
    // byte 64-95  : sha256(idB)
    // byte 96-127 : X_msg
    // byte 128-159: Y_msg
    // byte 160-191: K_bytes
    let mut transcript = [0u8; 6 * 32];

    let mut pw_hash = Sha256::new();
    pw_hash.update(password_vec);
    transcript[0..32].copy_from_slice(&pw_hash.finalize());

    let mut ida_hash = Sha256::new();
    ida_hash.update(id_a);
    transcript[32..64].copy_from_slice(&ida_hash.finalize());

    let mut idb_hash = Sha256::new();
    idb_hash.update(id_b);
    transcript[64..96].copy_from_slice(&idb_hash.finalize());

    transcript[96..128].copy_from_slice(first_msg);
    transcript[128..160].copy_from_slice(second_msg);
    transcript[160..192].copy_from_slice(key_bytes);

    //println!("transcript: {:?}", transcript.iter().to_hex());

    //let mut hash = G::TranscriptHash::default();
    let mut hash = Sha256::new();
    hash.update(transcript);
    hash.finalize().to_vec()
}

/// Hash symmetric identities.
pub(crate) fn hash_symmetric(
    password_vec: &[u8],
    id_s: &[u8],
    msg_u: &[u8],
    msg_v: &[u8],
    key_bytes: &[u8],
) -> Vec<u8> {
    assert_eq!(msg_u.len(), 32);
    assert_eq!(msg_v.len(), 32);
    // # since we don't know which side is which, we must sort the messages
    // first_msg, second_msg = sorted([msg1, msg2])
    // transcript = b"".join([sha256(pw).digest(),
    //                        sha256(idSymmetric).digest(),
    //                        first_msg, second_msg, K_bytes])

    // the transcript is fixed-length, made up of 5 32-byte values:
    // byte 0-31   : sha256(pw)
    // byte 32-63  : sha256(idSymmetric)
    // byte 64-95  : X_msg
    // byte 96-127 : Y_msg
    // byte 128-159: K_bytes
    let mut transcript = [0u8; 5 * 32];

    let mut pw_hash = Sha256::new();
    pw_hash.update(password_vec);
    transcript[0..32].copy_from_slice(&pw_hash.finalize());

    let mut ids_hash = Sha256::new();
    ids_hash.update(id_s);
    transcript[32..64].copy_from_slice(&ids_hash.finalize());

    if msg_u < msg_v {
        transcript[64..96].copy_from_slice(msg_u);
        transcript[96..128].copy_from_slice(msg_v);
    } else {
        transcript[64..96].copy_from_slice(msg_v);
        transcript[96..128].copy_from_slice(msg_u);
    }
    transcript[128..160].copy_from_slice(key_bytes);

    let mut hash = Sha256::new();
    hash.update(transcript);
    hash.finalize().to_vec()
}