1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
#![allow(dead_code)]

use curve25519_dalek::constants::ED25519_BASEPOINT_POINT;
use curve25519_dalek::edwards::CompressedEdwardsY;
use curve25519_dalek::edwards::EdwardsPoint as c2_Element;
use curve25519_dalek::scalar::Scalar as c2_Scalar;
use hex;
use hkdf::Hkdf;
use num_bigint::BigUint;
use rand::{CryptoRng, OsRng, Rng};
use sha2::{Digest, Sha256};
use std::fmt;
use std::ops::Deref;

//use hex::ToHex;

/* "newtype pattern": it's a Vec<u8>, but only used for a specific argument
 * type, to distinguish between ones that are meant as passwords, and ones
 * that are meant as identity strings */

#[derive(PartialEq, Eq, Clone)]
pub struct Password(Vec<u8>);
impl Password {
    pub fn new(p: &[u8]) -> Password {
        Password(p.to_vec())
    }
}
impl Deref for Password {
    type Target = Vec<u8>;
    fn deref(&self) -> &Vec<u8> {
        &self.0
    }
}

#[derive(PartialEq, Eq, Clone)]
pub struct Identity(Vec<u8>);
impl Deref for Identity {
    type Target = Vec<u8>;
    fn deref(&self) -> &Vec<u8> {
        &self.0
    }
}
impl Identity {
    pub fn new(p: &[u8]) -> Identity {
        Identity(p.to_vec())
    }
}

#[derive(Debug, PartialEq, Eq)]
pub enum ErrorType {
    BadSide,
    WrongLength,
    CorruptMessage,
}

#[derive(Debug, PartialEq, Eq)]
pub struct SPAKEErr {
    pub kind: ErrorType,
}

pub trait Group {
    type Scalar;
    type Element;
    //type Element: Add<Output=Self::Element>
    //    + Mul<Self::Scalar, Output=Self::Element>;
    // const element_length: usize; // in unstable, or u8
    //type ElementBytes : Index<usize, Output=u8>+IndexMut<usize>; // later
    type TranscriptHash;
    fn const_m() -> Self::Element;
    fn const_n() -> Self::Element;
    fn const_s() -> Self::Element;
    fn hash_to_scalar(s: &[u8]) -> Self::Scalar;
    fn random_scalar<T>(cspring: &mut T) -> Self::Scalar
    where
        T: Rng + CryptoRng;
    fn scalar_neg(s: &Self::Scalar) -> Self::Scalar;
    fn element_to_bytes(e: &Self::Element) -> Vec<u8>;
    fn bytes_to_element(b: &[u8]) -> Option<Self::Element>;
    fn element_length() -> usize;
    fn basepoint_mult(s: &Self::Scalar) -> Self::Element;
    fn scalarmult(e: &Self::Element, s: &Self::Scalar) -> Self::Element;
    fn add(a: &Self::Element, b: &Self::Element) -> Self::Element;
}

#[derive(Debug, PartialEq, Eq)]
pub struct Ed25519Group;

impl Group for Ed25519Group {
    type Scalar = c2_Scalar;
    type Element = c2_Element;
    //type ElementBytes = Vec<u8>;
    //type ElementBytes = [u8; 32];
    //type ScalarBytes
    type TranscriptHash = Sha256;

    fn const_m() -> c2_Element {
        // python -c "import binascii, spake2; b=binascii.hexlify(spake2.ParamsEd25519.M.to_bytes()); print(', '.join(['0x'+b[i:i+2] for i in range(0,len(b),2)]))"
        // 15cfd18e385952982b6a8f8c7854963b58e34388c8e6dae891db756481a02312
        CompressedEdwardsY([
            0x15, 0xcf, 0xd1, 0x8e, 0x38, 0x59, 0x52, 0x98, 0x2b, 0x6a, 0x8f, 0x8c, 0x78, 0x54,
            0x96, 0x3b, 0x58, 0xe3, 0x43, 0x88, 0xc8, 0xe6, 0xda, 0xe8, 0x91, 0xdb, 0x75, 0x64,
            0x81, 0xa0, 0x23, 0x12,
        ]).decompress()
            .unwrap()
    }

    fn const_n() -> c2_Element {
        // python -c "import binascii, spake2; b=binascii.hexlify(spake2.ParamsEd25519.N.to_bytes()); print(', '.join(['0x'+b[i:i+2] for i in range(0,len(b),2)]))"
        // f04f2e7eb734b2a8f8b472eaf9c3c632576ac64aea650b496a8a20ff00e583c3
        CompressedEdwardsY([
            0xf0, 0x4f, 0x2e, 0x7e, 0xb7, 0x34, 0xb2, 0xa8, 0xf8, 0xb4, 0x72, 0xea, 0xf9, 0xc3,
            0xc6, 0x32, 0x57, 0x6a, 0xc6, 0x4a, 0xea, 0x65, 0x0b, 0x49, 0x6a, 0x8a, 0x20, 0xff,
            0x00, 0xe5, 0x83, 0xc3,
        ]).decompress()
            .unwrap()
    }

    fn const_s() -> c2_Element {
        // python -c "import binascii, spake2; b=binascii.hexlify(spake2.ParamsEd25519.S.to_bytes()); print(', '.join(['0x'+b[i:i+2] for i in range(0,len(b),2)]))"
        // 6f00dae87c1be1a73b5922ef431cd8f57879569c222d22b1cd71e8546ab8e6f1
        CompressedEdwardsY([
            0x6f, 0x00, 0xda, 0xe8, 0x7c, 0x1b, 0xe1, 0xa7, 0x3b, 0x59, 0x22, 0xef, 0x43, 0x1c,
            0xd8, 0xf5, 0x78, 0x79, 0x56, 0x9c, 0x22, 0x2d, 0x22, 0xb1, 0xcd, 0x71, 0xe8, 0x54,
            0x6a, 0xb8, 0xe6, 0xf1,
        ]).decompress()
            .unwrap()
    }

    fn hash_to_scalar(s: &[u8]) -> c2_Scalar {
        ed25519_hash_to_scalar(s)
    }
    fn random_scalar<T>(cspring: &mut T) -> c2_Scalar
    where
        T: Rng + CryptoRng,
    {
        c2_Scalar::random(cspring)
    }
    fn scalar_neg(s: &c2_Scalar) -> c2_Scalar {
        -s
    }
    fn element_to_bytes(s: &c2_Element) -> Vec<u8> {
        s.compress().as_bytes().to_vec()
    }
    fn element_length() -> usize {
        32
    }
    fn bytes_to_element(b: &[u8]) -> Option<c2_Element> {
        if b.len() != 32 {
            return None;
        }
        //let mut bytes: [u8; 32] =
        let mut bytes = [0u8; 32];
        bytes.copy_from_slice(b);
        let cey = CompressedEdwardsY(bytes);
        // CompressedEdwardsY::new(b)
        cey.decompress()
    }

    fn basepoint_mult(s: &c2_Scalar) -> c2_Element {
        //c2_Element::basepoint_mult(s)
        ED25519_BASEPOINT_POINT * s
    }
    fn scalarmult(e: &c2_Element, s: &c2_Scalar) -> c2_Element {
        e * s
        //e.scalar_mult(s)
    }
    fn add(a: &c2_Element, b: &c2_Element) -> c2_Element {
        a + b
        //a.add(b)
    }
}

fn decimal_to_scalar(d: &[u8]) -> c2_Scalar {
    let bytes = BigUint::parse_bytes(d, 10).unwrap().to_bytes_le();
    assert_eq!(bytes.len(), 32);
    let mut b2 = [0u8; 32];
    b2.copy_from_slice(&bytes);
    c2_Scalar::from_bytes_mod_order(b2)
}

fn ed25519_hash_to_scalar(s: &[u8]) -> c2_Scalar {
    //c2_Scalar::hash_from_bytes::<Sha512>(&s)
    // spake2.py does:
    //  h = HKDF(salt=b"", ikm=s, hash=SHA256, info=b"SPAKE2 pw", len=32+16)
    //  i = int(h, 16)
    //  i % q

    let mut okm = [0u8; 32 + 16];
    Hkdf::<Sha256>::extract(Some(b""), s)
        .expand(b"SPAKE2 pw", &mut okm)
        .unwrap();
    //println!("expanded:   {}{}", "................................", okm.iter().to_hex()); // ok

    let mut reducible = [0u8; 64]; // little-endian
    for (i, x) in okm.iter().enumerate().take(32 + 16) {
        reducible[32 + 16 - 1 - i] = *x;
    }
    //println!("reducible:  {}", reducible.iter().to_hex());
    c2_Scalar::from_bytes_mod_order_wide(&reducible)
    //let reduced = c2_Scalar::reduce(&reducible);
    //println!("reduced:    {}", reduced.as_bytes().to_hex());
    //println!("done");
    //reduced
}

fn ed25519_hash_ab(
    password_vec: &[u8],
    id_a: &[u8],
    id_b: &[u8],
    first_msg: &[u8],
    second_msg: &[u8],
    key_bytes: &[u8],
) -> Vec<u8> {
    assert_eq!(first_msg.len(), 32);
    assert_eq!(second_msg.len(), 32);
    // the transcript is fixed-length, made up of 6 32-byte values:
    // byte 0-31   : sha256(pw)
    // byte 32-63  : sha256(idA)
    // byte 64-95  : sha256(idB)
    // byte 96-127 : X_msg
    // byte 128-159: Y_msg
    // byte 160-191: K_bytes
    let mut transcript = [0u8; 6 * 32];

    let mut pw_hash = Sha256::new();
    pw_hash.input(password_vec);
    transcript[0..32].copy_from_slice(&pw_hash.result());

    let mut ida_hash = Sha256::new();
    ida_hash.input(id_a);
    transcript[32..64].copy_from_slice(&ida_hash.result());

    let mut idb_hash = Sha256::new();
    idb_hash.input(id_b);
    transcript[64..96].copy_from_slice(&idb_hash.result());

    transcript[96..128].copy_from_slice(first_msg);
    transcript[128..160].copy_from_slice(second_msg);
    transcript[160..192].copy_from_slice(key_bytes);

    //println!("transcript: {:?}", transcript.iter().to_hex());

    //let mut hash = G::TranscriptHash::default();
    let mut hash = Sha256::new();
    hash.input(&transcript);
    hash.result().to_vec()
}

fn ed25519_hash_symmetric(
    password_vec: &[u8],
    id_s: &[u8],
    msg_u: &[u8],
    msg_v: &[u8],
    key_bytes: &[u8],
) -> Vec<u8> {
    assert_eq!(msg_u.len(), 32);
    assert_eq!(msg_v.len(), 32);
    // # since we don't know which side is which, we must sort the messages
    // first_msg, second_msg = sorted([msg1, msg2])
    // transcript = b"".join([sha256(pw).digest(),
    //                        sha256(idSymmetric).digest(),
    //                        first_msg, second_msg, K_bytes])

    // the transcript is fixed-length, made up of 5 32-byte values:
    // byte 0-31   : sha256(pw)
    // byte 32-63  : sha256(idSymmetric)
    // byte 64-95  : X_msg
    // byte 96-127 : Y_msg
    // byte 128-159: K_bytes
    let mut transcript = [0u8; 5 * 32];

    let mut pw_hash = Sha256::new();
    pw_hash.input(password_vec);
    transcript[0..32].copy_from_slice(&pw_hash.result());

    let mut ids_hash = Sha256::new();
    ids_hash.input(id_s);
    transcript[32..64].copy_from_slice(&ids_hash.result());

    if msg_u < msg_v {
        transcript[64..96].copy_from_slice(msg_u);
        transcript[96..128].copy_from_slice(msg_v);
    } else {
        transcript[64..96].copy_from_slice(msg_v);
        transcript[96..128].copy_from_slice(msg_u);
    }
    transcript[128..160].copy_from_slice(key_bytes);

    let mut hash = Sha256::new();
    hash.input(&transcript);
    hash.result().to_vec()
}

/* "session type pattern" */

#[derive(Debug, PartialEq, Eq)]
enum Side {
    A,
    B,
    Symmetric,
}

// we implement a custom Debug below, to avoid revealing secrets in a dump
#[derive(PartialEq, Eq)]
pub struct SPAKE2<G: Group> {
    //where &G::Scalar: Neg {
    side: Side,
    xy_scalar: G::Scalar,
    password_vec: Vec<u8>,
    id_a: Vec<u8>,
    id_b: Vec<u8>,
    id_s: Vec<u8>,
    msg1: Vec<u8>,
    password_scalar: G::Scalar,
}

impl<G: Group> SPAKE2<G> {
    fn start_internal(
        side: Side,
        password: &Password,
        id_a: &Identity,
        id_b: &Identity,
        id_s: &Identity,
        xy_scalar: G::Scalar,
    ) -> (SPAKE2<G>, Vec<u8>) {
        //let password_scalar: G::Scalar = hash_to_scalar::<G::Scalar>(password);
        let password_scalar: G::Scalar = G::hash_to_scalar(&password);

        // a: X = B*x + M*pw
        // b: Y = B*y + N*pw
        // sym: X = B*x * S*pw
        let blinding = match side {
            Side::A => G::const_m(),
            Side::B => G::const_n(),
            Side::Symmetric => G::const_s(),
        };
        let m1: G::Element = G::add(
            &G::basepoint_mult(&xy_scalar),
            &G::scalarmult(&blinding, &password_scalar),
        );
        //let m1: G::Element = &G::basepoint_mult(&x) + &(blinding * &password_scalar);
        let msg1: Vec<u8> = G::element_to_bytes(&m1);
        let mut password_vec = Vec::new();
        password_vec.extend_from_slice(&password);
        let mut id_a_copy = Vec::new();
        id_a_copy.extend_from_slice(&id_a);
        let mut id_b_copy = Vec::new();
        id_b_copy.extend_from_slice(&id_b);
        let mut id_s_copy = Vec::new();
        id_s_copy.extend_from_slice(&id_s);

        let mut msg_and_side = Vec::new();
        msg_and_side.push(match side {
            Side::A => 0x41,         // 'A'
            Side::B => 0x42,         // 'B'
            Side::Symmetric => 0x53, // 'S'
        });
        msg_and_side.extend_from_slice(&msg1);

        (
            SPAKE2 {
                side,
                xy_scalar,
                password_vec, // string
                id_a: id_a_copy,
                id_b: id_b_copy,
                id_s: id_s_copy,
                msg1: msg1.clone(),
                password_scalar, // scalar
            },
            msg_and_side,
        )
    }

    fn start_a_internal(
        password: &Password,
        id_a: &Identity,
        id_b: &Identity,
        xy_scalar: G::Scalar,
    ) -> (SPAKE2<G>, Vec<u8>) {
        Self::start_internal(
            Side::A,
            &password,
            &id_a,
            &id_b,
            &Identity::new(b""),
            xy_scalar,
        )
    }

    fn start_b_internal(
        password: &Password,
        id_a: &Identity,
        id_b: &Identity,
        xy_scalar: G::Scalar,
    ) -> (SPAKE2<G>, Vec<u8>) {
        Self::start_internal(
            Side::B,
            &password,
            &id_a,
            &id_b,
            &Identity::new(b""),
            xy_scalar,
        )
    }

    fn start_symmetric_internal(
        password: &Password,
        id_s: &Identity,
        xy_scalar: G::Scalar,
    ) -> (SPAKE2<G>, Vec<u8>) {
        Self::start_internal(
            Side::Symmetric,
            &password,
            &Identity::new(b""),
            &Identity::new(b""),
            &id_s,
            xy_scalar,
        )
    }

    pub fn start_a(password: &Password, id_a: &Identity, id_b: &Identity) -> (SPAKE2<G>, Vec<u8>) {
        let mut cspring: OsRng = OsRng::new().unwrap();
        let xy_scalar: G::Scalar = G::random_scalar(&mut cspring);
        Self::start_a_internal(&password, &id_a, &id_b, xy_scalar)
    }

    pub fn start_b(password: &Password, id_a: &Identity, id_b: &Identity) -> (SPAKE2<G>, Vec<u8>) {
        let mut cspring: OsRng = OsRng::new().unwrap();
        let xy_scalar: G::Scalar = G::random_scalar(&mut cspring);
        Self::start_b_internal(&password, &id_a, &id_b, xy_scalar)
    }

    pub fn start_symmetric(password: &Password, id_s: &Identity) -> (SPAKE2<G>, Vec<u8>) {
        let mut cspring: OsRng = OsRng::new().unwrap();
        let xy_scalar: G::Scalar = G::random_scalar(&mut cspring);
        Self::start_symmetric_internal(&password, &id_s, xy_scalar)
    }

    pub fn finish(self, msg2: &[u8]) -> Result<Vec<u8>, SPAKEErr> {
        if msg2.len() != 1 + G::element_length() {
            return Err(SPAKEErr {
                kind: ErrorType::WrongLength,
            });
        }
        let msg_side = msg2[0];

        match self.side {
            Side::A => match msg_side {
                0x42 => (), // 'B'
                _ => {
                    return Err(SPAKEErr {
                        kind: ErrorType::BadSide,
                    })
                }
            },
            Side::B => match msg_side {
                0x41 => (), // 'A'
                _ => {
                    return Err(SPAKEErr {
                        kind: ErrorType::BadSide,
                    })
                }
            },
            Side::Symmetric => match msg_side {
                0x53 => (), // 'S'
                _ => {
                    return Err(SPAKEErr {
                        kind: ErrorType::BadSide,
                    })
                }
            },
        }

        let msg2_element = match G::bytes_to_element(&msg2[1..]) {
            Some(x) => x,
            None => {
                return Err(SPAKEErr {
                    kind: ErrorType::CorruptMessage,
                })
            }
        };

        // a: K = (Y+N*(-pw))*x
        // b: K = (X+M*(-pw))*y
        let unblinding = match self.side {
            Side::A => G::const_n(),
            Side::B => G::const_m(),
            Side::Symmetric => G::const_s(),
        };
        let tmp1 = G::scalarmult(&unblinding, &G::scalar_neg(&self.password_scalar));
        let tmp2 = G::add(&msg2_element, &tmp1);
        let key_element = G::scalarmult(&tmp2, &self.xy_scalar);
        let key_bytes = G::element_to_bytes(&key_element);

        // key = H(H(pw) + H(idA) + H(idB) + X + Y + K)
        //transcript = b"".join([sha256(pw).digest(),
        //                       sha256(idA).digest(), sha256(idB).digest(),
        //                       X_msg, Y_msg, K_bytes])
        //key = sha256(transcript).digest()
        // note that both sides must use the same order

        Ok(match self.side {
            Side::A => ed25519_hash_ab(
                &self.password_vec,
                &self.id_a,
                &self.id_b,
                self.msg1.as_slice(),
                &msg2[1..],
                &key_bytes,
            ),
            Side::B => ed25519_hash_ab(
                &self.password_vec,
                &self.id_a,
                &self.id_b,
                &msg2[1..],
                self.msg1.as_slice(),
                &key_bytes,
            ),
            Side::Symmetric => ed25519_hash_symmetric(
                &self.password_vec,
                &self.id_s,
                &self.msg1,
                &msg2[1..],
                &key_bytes,
            ),
        })
    }
}

fn maybe_utf8(s: &[u8]) -> String {
    match String::from_utf8(s.to_vec()) {
        Ok(m) => format!("(s={})", m),
        Err(_) => format!("(hex={})", hex::encode(s)),
    }
}

impl<G: Group> fmt::Debug for SPAKE2<G> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "SPAKE2(G=?, side={:?}, idA={}, idB={}, idS={})",
            self.side,
            maybe_utf8(&self.id_a),
            maybe_utf8(&self.id_b),
            maybe_utf8(&self.id_s)
        )
    }
}

#[cfg(test)]
mod test {
    /* This compares results against the python compatibility tests:
    spake2.test.test_compat.SPAKE2.test_asymmetric . The python test passes a
    deterministic RNG (used only for tests, of course) into the per-Group
    "random_scalar()" function, which results in some particular scalar.
     */
    use super::*;
    use curve25519_dalek::constants::ED25519_BASEPOINT_POINT;
    use hex;
    use spake2::{Ed25519Group, SPAKE2};

    // the python tests show the long-integer form of scalars. the rust code
    // wants an array of bytes (little-endian). Make sure the way we convert
    // things works correctly.

    #[test]
    fn test_convert() {
        let t1_decimal =
            b"2238329342913194256032495932344128051776374960164957527413114840482143558222";
        let t1_scalar = decimal_to_scalar(t1_decimal);
        let t1_bytes = t1_scalar.to_bytes();
        let expected = [
            0x4e, 0x5a, 0xb4, 0x34, 0x5d, 0x47, 0x08, 0x84, 0x59, 0x13, 0xb4, 0x64, 0x1b, 0xc2,
            0x7d, 0x52, 0x52, 0xa5, 0x85, 0x10, 0x1b, 0xcc, 0x42, 0x44, 0xd4, 0x49, 0xf4, 0xa8,
            0x79, 0xd9, 0xf2, 0x04,
        ];
        assert_eq!(t1_bytes, expected);
        //println!("t1_scalar is {:?}", t1_scalar);
    }

    #[test]
    fn test_serialize_basepoint() {
        // make sure elements are serialized same as the python library
        let exp = "5866666666666666666666666666666666666666666666666666666666666666";
        let base_vec = ED25519_BASEPOINT_POINT.compress().as_bytes().to_vec();
        let base_hex = hex::encode(base_vec);
        println!("exp: {:?}", exp);
        println!("got: {:?}", base_hex);
        assert_eq!(exp, base_hex);
    }

    #[test]
    fn test_password_to_scalar() {
        let password = Password::new(b"password");
        let expected_pw_scalar = decimal_to_scalar(
            b"3515301705789368674385125653994241092664323519848410154015274772661223168839",
        );
        let pw_scalar = Ed25519Group::hash_to_scalar(&password);
        println!("exp: {:?}", hex::encode(expected_pw_scalar.as_bytes()));
        println!("got: {:?}", hex::encode(pw_scalar.as_bytes()));
        assert_eq!(&pw_scalar, &expected_pw_scalar);
    }

    #[test]
    fn test_sizes() {
        let (s1, msg1) = SPAKE2::<Ed25519Group>::start_a(
            &Password::new(b"password"),
            &Identity::new(b"idA"),
            &Identity::new(b"idB"),
        );
        assert_eq!(msg1.len(), 1 + 32);
        let (s2, msg2) = SPAKE2::<Ed25519Group>::start_b(
            &Password::new(b"password"),
            &Identity::new(b"idA"),
            &Identity::new(b"idB"),
        );
        assert_eq!(msg2.len(), 1 + 32);
        let key1 = s1.finish(&msg2).unwrap();
        let key2 = s2.finish(&msg1).unwrap();
        assert_eq!(key1.len(), 32);
        assert_eq!(key2.len(), 32);

        let (s1, msg1) = SPAKE2::<Ed25519Group>::start_symmetric(
            &Password::new(b"password"),
            &Identity::new(b"idS"),
        );
        assert_eq!(msg1.len(), 1 + 32);
        let (s2, msg2) = SPAKE2::<Ed25519Group>::start_symmetric(
            &Password::new(b"password"),
            &Identity::new(b"idS"),
        );
        assert_eq!(msg2.len(), 1 + 32);
        let key1 = s1.finish(&msg2).unwrap();
        let key2 = s2.finish(&msg1).unwrap();
        assert_eq!(key1.len(), 32);
        assert_eq!(key2.len(), 32);
    }

    #[test]
    fn test_hash_ab() {
        let key = ed25519_hash_ab(
            b"pw",
            b"idA",
            b"idB",
            b"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", // len=32
            b"YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY",
            b"KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK",
        );
        let expected_key = "d59d9ba920f7092565cec747b08d5b2e981d553ac32fde0f25e5b4a4cfca3efd";
        assert_eq!(hex::encode(key), expected_key);
    }

    #[test]
    fn test_hash_symmetric() {
        let key = ed25519_hash_symmetric(
            b"pw",
            b"idSymmetric",
            b"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
            b"YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY",
            b"KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK",
        );
        let expected_key = "b0b31e4401aae37d91a9a8bf6fbb1298cafc005ff9142e3ffc5b9799fb11128b";
        assert_eq!(hex::encode(key), expected_key);
    }

    #[test]
    fn test_asymmetric() {
        let scalar_a = decimal_to_scalar(
            b"2611694063369306139794446498317402240796898290761098242657700742213257926693",
        );
        let scalar_b = decimal_to_scalar(
            b"7002393159576182977806091886122272758628412261510164356026361256515836884383",
        );
        let expected_pw_scalar = decimal_to_scalar(
            b"3515301705789368674385125653994241092664323519848410154015274772661223168839",
        );

        println!("scalar_a is {}", hex::encode(scalar_a.as_bytes()));

        let (s1, msg1) = SPAKE2::<Ed25519Group>::start_a_internal(
            &Password::new(b"password"),
            &Identity::new(b"idA"),
            &Identity::new(b"idB"),
            scalar_a,
        );
        let expected_msg1 = "416fc960df73c9cf8ed7198b0c9534e2e96a5984bfc5edc023fd24dacf371f2af9";

        println!();
        println!("xys1: {:?}", hex::encode(s1.xy_scalar.as_bytes()));
        println!();
        println!("pws1: {:?}", hex::encode(s1.password_scalar.as_bytes()));
        println!("exp : {:?}", hex::encode(expected_pw_scalar.as_bytes()));
        println!();
        println!("msg1: {:?}", hex::encode(&msg1));
        println!("exp : {:?}", expected_msg1);
        println!();

        assert_eq!(
            hex::encode(expected_pw_scalar.as_bytes()),
            hex::encode(s1.password_scalar.as_bytes())
        );
        assert_eq!(hex::encode(&msg1), expected_msg1);

        let (s2, msg2) = SPAKE2::<Ed25519Group>::start_b_internal(
            &Password::new(b"password"),
            &Identity::new(b"idA"),
            &Identity::new(b"idB"),
            scalar_b,
        );
        assert_eq!(expected_pw_scalar, s2.password_scalar);
        assert_eq!(
            hex::encode(&msg2),
            "42354e97b88406922b1df4bea1d7870f17aed3dba7c720b313edae315b00959309"
        );

        let key1 = s1.finish(&msg2).unwrap();
        let key2 = s2.finish(&msg1).unwrap();
        assert_eq!(key1, key2);
        assert_eq!(
            hex::encode(key1),
            "712295de7219c675ddd31942184aa26e0a957cf216bc230d165b215047b520c1"
        );
    }

    #[test]
    fn test_debug() {
        let (s1, _msg1) = SPAKE2::<Ed25519Group>::start_a(
            &Password::new(b"password"),
            &Identity::new(b"idA"),
            &Identity::new(b"idB"),
        );
        println!("s1: {:?}", s1);
        let (s2, _msg1) = SPAKE2::<Ed25519Group>::start_symmetric(
            &Password::new(b"password"),
            &Identity::new(b"idS"),
        );
        println!("s2: {:?}", s2);
    }

}