1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
//! This crate exposes macros that generate data structures
//! on `Ord` keys that provide faster lookups than regular `Vec`s (`O(log(n))` vs `O(n)`)
//! and is simpler and more memory efficient than hashmaps. It is ideal for small
//! lookup tables where insertions and deletions are infrequent.

//!
//! # Example
//! ```
//! use sortedvec::sortedvec;
//!
//! sortedvec! {
//!     struct SortedVec {
//!         fn derive_key(x: &u32) -> u32 { *x }
//!     }
//! }
//!
//! let unsorted = vec![3, 5, 0, 10, 7, 1];
//! let sorted = SortedVec::from(unsorted.clone());
//!
//! // linear search (slow!)
//! let unsorted_contains_six: Option<_> = unsorted.iter().find(|&x| *x == 6);
//! assert!(unsorted_contains_six.is_none());
//!
//! // binary search (fast!)
//! let sorted_contains_six: Option<_> = sorted.find(&6);
//! assert!(sorted_contains_six.is_none());
//! ```

#[cfg(test)]
extern crate quickcheck;
#[cfg(test)]
#[macro_use(quickcheck)]
extern crate quickcheck_macros;

/// An example of a data structure defined using the `sortedvec!` macro.
pub mod example;

/// A macro that defines a sorted vector data structure.
///
/// The generated struct is specific to the given keys and value types. To create the struct,
/// four bits are required:
/// - a struct name,
/// - a value type,
/// - a key type. Since we will sort on these internally, this type must implement `Ord`,
/// - a key extraction function of type `FnMut(&T) -> K`.
///
/// It matches the following input:
/// ```text
/// $(#[$attr:meta])*
/// $v:vis struct $name:ident {
///     fn derive_key($i:ident : & $val:ty) -> $key:ty {
///         $keyexpr:expr
///     } $(,)?
/// }
/// ```
///
/// To get an overview of the exposed methods on the generated structure, see the documentation
/// of the example module.
///
/// # Example
/// ```rust
/// use sortedvec::sortedvec;
///
/// /// Example key
/// #[derive(PartialOrd, Ord, PartialEq, Eq, Debug, Clone, Copy)]
/// pub struct K;
///
/// /// Example value
/// #[derive(Debug, Clone)]
/// pub struct T {
///     key: K,
/// }
///
/// sortedvec! {
///     /// Sorted vector type that provides quick access to `T`s through `K`s.
///     #[derive(Debug, Clone)]
///     pub struct ExampleSortedVec {
///         fn derive_key(t: &T) -> K { t.key }
///     }
/// }
///
/// let sv = ExampleSortedVec::default();
/// ```
#[macro_export]
macro_rules! sortedvec {
(
    $(#[$attr:meta])*
    $v:vis struct $name:ident {
        fn derive_key($i:ident : & $val:ty) -> $key:ty {
            $keyexpr:expr
        } $(,)?
    }
) => {
        $(#[$attr])*
        $v struct $name {
            inner: Vec<$val>,
        }

        #[allow(dead_code)]
        impl $name {
            fn derive_key($i : &$val) -> $key { $keyexpr }

            /// Tries to find an element in the collection with the given key, and return
            /// its index when found. When it is not present, the index where it should be
            /// inserted is returned. This method has logarithmic worst case time complexity.
            pub fn position(&self, key: &$key) -> Result<usize, usize> {
                self.inner
                    .binary_search_by(|probe| Self::derive_key(probe).cmp(key))
            }

            /// Tries to find an element in the collection with the given key. It has
            /// logarithmic worst case time complexity.
            pub fn find(&self, key: &$key) -> Option<&$val> {
                // The unsafe block is OK because `position` is guaranteed to
                // return a valid index.
                self.position(key)
                    .ok()
                    .map(|idx| unsafe { self.inner.get_unchecked(idx) })
            }

            /// Checks whether there is a value with that key in the collection. This is
            /// done in `O(log(n))` time.
            pub fn contains(&self, key: &$key) -> bool {
                self.position(key).is_ok()
            }

            /// Removes and returns a single value from the collection with the given key,
            /// if it exists. This operation has linear worst-case time complexity.
            pub fn remove(&mut self, key: &$key) -> Option<$val> {
                self.position(key)
                    .ok()
                    .map(|idx| self.inner.remove(idx))
            }

            /// Inserts a new value into the collection, maintaining the internal
            /// order invariant. This is an `O(n)` operation.
            pub fn insert(&mut self, val: $val) {
                let ref key = Self::derive_key(&val);
                let idx = match self.position(key) {
                    Ok(i) | Err(i) => i,
                };
                self.inner.insert(idx, val);
            }

            /// Splits the collection into two at the given index.
            ///
            /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
            /// and the returned `Self` contains elements `[at, len)`.
            ///
            /// Note that the capacity of `self` does not change.
            ///
            /// # Panics
            ///
            /// Panics if `at > len`.
            pub fn split_off(&mut self, at: usize) -> Self {
                let other_inner = self.inner.split_off(at);
                Self {
                    inner: other_inner,
                }
            }

            /// Removes all elements but one that resolve to the same key.
            pub fn dedup(&mut self) {
                self.inner.dedup_by(|a, b| Self::derive_key(a) == Self::derive_key(b));
            }

            /// Removes and returns the greatest element with the respect to
            /// the generated keys. An `O(1)` operation.
            pub fn pop(&mut self) -> Option<$val> {
                self.inner.pop()
            }

            // private method
            fn sort(&mut self) {
                self.inner.sort_unstable_by(|a, b| {
                    let lhs = Self::derive_key(a);
                    let rhs = Self::derive_key(b);
                    lhs.cmp(&rhs)
                })
            }
        }

        impl std::default::Default for $name {
            fn default() -> Self {
                Self { inner: std::default::Default::default() }
            }
        }

        impl Extend<$val> for $name {
            fn extend<I>(&mut self, iter: I)
            where
                I: IntoIterator<Item = $val>,
            {
                self.inner.extend(iter);
                self.sort();
            }
        }

        impl std::iter::FromIterator<$val> for $name {
            fn from_iter<I: std::iter::IntoIterator<Item=$val>>(iter: I) -> Self {
                let inner = Vec::from_iter(iter);
                From::from(inner)
            }
        }

        impl std::iter::IntoIterator for $name {
            type Item = $val;
            type IntoIter = std::vec::IntoIter<$val>;

            fn into_iter(self) -> Self::IntoIter {
                self.inner.into_iter()
            }
        }

        impl Into<Vec<$val>> for $name {
            fn into(self) -> Vec<$val> {
                self.inner
            }
        }

        impl From<Vec<$val>> for $name {
            fn from(vec: Vec<$val>) -> Self {
                let mut res = Self { inner: vec };
                res.sort();
                res
            }
        }

        impl std::ops::Deref for $name {
            type Target = Vec<$val>;

            fn deref(&self) -> &Self::Target {
                &self.inner
            }
        }

        impl std::borrow::Borrow<[$val]> for $name {
            fn borrow(&self) -> &[$val] {
                &self.inner
            }
        }

        impl AsRef<[$val]> for $name {
            fn as_ref(&self) -> &[$val] {
                &self.inner
            }
        }

        impl AsRef<Vec<$val>> for $name {
            fn as_ref(&self) -> &Vec<$val> {
                &self.inner
            }
        }
    }
}

/// A macro that defines a specialized sorted vector data structure on [slice] keys.
///
/// It differs from the standard
/// `sortedvec!` macro in that the generated data structure is sorted on slices. This enables binary
/// searches to be a bit smarter by skipping the comparison of the start of the slice that was shared
/// with probes smaller and larger than the current probe.
///
/// Note that when your key can be compared as `&[u8]`s, like `&str`, a regular `sortedvec!`
/// may still be faster as SIMD instructions can be used to compare long byte sequences and there is
/// less bookkeeping involved.
///
/// The generated struct is specific to the given keys and value types. To create the struct,
/// four bits are required:
/// - a struct name,
/// - a value type,
/// - a slice key type of the form `&[K]`. Since we will sort on these internally, `K` must implement `Ord`,
/// - a key extraction function of type `FnMut(&T) -> &[K]`.
///
/// It matches the following input:
/// ```text
/// $(#[$attr:meta])*
/// $v:vis struct $name:ident {
///     fn derive_key($i:ident : & $val:ty) -> & [ $key:ty ] {
///         $keyexpr:expr
///     } $(,)?
/// }
/// ```
///
/// The exposed methods are identical to that of a data structure generated by `sortedvec!`.
/// To get an overview of the exposed methods on the generated structure, see the documentation
/// of the example module.
///
/// [slice]: https://doc.rust-lang.org/std/primitive.slice.html
#[macro_export]
macro_rules! sortedvec_slicekey {
(
    $(#[$attr:meta])*
    $v:vis struct $name:ident {
        fn derive_key($i:ident : & $val:ty) -> & [ $key:ty ] {
            $keyexpr:expr
        } $(,)?
    }
) => {
        $(#[$attr])*
        $v struct $name {
            inner: Vec<$val>,
        }

        #[allow(dead_code)]
        impl $name {
            fn derive_key($i : &$val) -> & [ $key ] { $keyexpr }

            /// Tries to find an element in the collection with the given key, and return
            /// its index when found. When it is not present, the index where it should be
            /// inserted is returned. This method has logarithmic worst case time complexity.
            pub fn position<E: AsRef<[$key]>>(&self, init_key: E) -> Result<usize, usize> {
                let mut size = self.inner.len();
                let mut upper_shared_prefix = 0;
                let mut lower_shared_prefix = 0;
                if size == 0 {
                    return Err(0);
                }
                let key_as_slice = init_key.as_ref();
                let mut base = 0usize;
                while size > 1 {
                    let half = size / 2;
                    let mid = base + half;
                    let prefix_skip = std::cmp::min(lower_shared_prefix, upper_shared_prefix);
                    // mid is always in [0, size), that means mid is >= 0 and < size.
                    // mid >= 0: by definition
                    // mid < size: mid = size / 2 + size / 4 + size / 8 ...
                    let elt = unsafe { self.inner.get_unchecked(mid) };
                    let key = Self::derive_key(elt);
                    let (prefix_len, cmp) = unsafe {
                        Self::compare(key.get_unchecked(prefix_skip..), key_as_slice.get_unchecked(prefix_skip..))
                    };
                    base = match cmp {
                        std::cmp::Ordering::Greater => {
                            upper_shared_prefix = prefix_skip + prefix_len;
                            base
                        }
                        std::cmp::Ordering::Less => {
                            lower_shared_prefix = prefix_skip + prefix_len;
                            mid
                        }
                        std::cmp::Ordering::Equal => return Ok(mid),
                    };
                    size -= half;
                }
                let prefix_skip = std::cmp::min(lower_shared_prefix, upper_shared_prefix);
                // base is always in [0, size) because base <= mid.
                let elt = unsafe { self.inner.get_unchecked(base) };
                let key = unsafe { &Self::derive_key(&elt).get_unchecked(prefix_skip..) };
                let (_prefix, cmp) = unsafe { Self::compare(key, key_as_slice.get_unchecked(prefix_skip..)) };
                if cmp == std::cmp::Ordering::Equal { Ok(base) } else { Err(base) }
            }

            #[inline]
            fn compare(slice: &[$key], other: &[$key]) -> (usize, std::cmp::Ordering) {
                let l = std::cmp::min(slice.len(), other.len());
                let mut prefix_len = 0;

                // Slice to the loop iteration range to enable bound check
                // elimination in the compiler
                let lhs = &slice[..l];
                let rhs = &other[..l];

                for i in 0..l {
                    match lhs[i].cmp(&rhs[i]) {
                        std::cmp::Ordering::Equal => { prefix_len += 1 }
                        non_eq => return (prefix_len, non_eq),
                    }
                }

                (prefix_len, slice.len().cmp(&other.len()))
            }

            /// Finds and returns reference to element with given key, if it exists.
            /// Implementation largely taken from `::std::vec::Vec::binary_search_by`.
            pub fn find<E: AsRef<[$key]>>(&self, init_key: E) -> Option<&$val> {
                // The unsafe block is OK because `position` is guaranteed to
                // return a valid index.
                self.position(init_key).ok().map(|ix| unsafe { self.inner.get_unchecked(ix) })
            }

            /// Checks whether there is a value with that key in the collection. This is
            /// done in `O(log(n))` time.
            pub fn contains<E: AsRef<[$key]>>(&self, key: E) -> bool {
                self.position(key).is_ok()
            }

            /// Removes and returns a single value from the collection with the given key,
            /// if it exists. This operation has linear worst-case time complexity.
            pub fn remove<E: AsRef<[$key]>>(&mut self, key: E) -> Option<$val> {
                self.position(key)
                    .ok()
                    .map(|idx| self.inner.remove(idx))
            }

            /// Inserts a new value into the collection, maintaining the internal
            /// order invariant. This is an `O(n)` operation.
            pub fn insert(&mut self, val: $val) {
                let ref key = Self::derive_key(&val);
                let idx = match self.position(key) {
                    Ok(i) | Err(i) => i,
                };
                self.inner.insert(idx, val);
            }

            /// Splits the collection into two at the given index.
            ///
            /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
            /// and the returned `Self` contains elements `[at, len)`.
            ///
            /// Note that the capacity of `self` does not change.
            ///
            /// # Panics
            ///
            /// Panics if `at > len`.
            pub fn split_off(&mut self, at: usize) -> Self {
                let other_inner = self.inner.split_off(at);
                Self {
                    inner: other_inner,
                }
            }

            /// Removes all elements but one that resolve to the same key.
            pub fn dedup(&mut self) {
                self.inner.dedup_by(|a, b| Self::derive_key(a) == Self::derive_key(b));
            }

            /// Removes and returns the greatest element with the respect to
            /// the generated keys. An `O(1)` operation.
            pub fn pop(&mut self) -> Option<$val> {
                self.inner.pop()
            }

            // private method
            fn sort(&mut self) {
                self.inner.sort_unstable_by(|a, b| {
                    let lhs = Self::derive_key(a);
                    let rhs = Self::derive_key(b);
                    lhs.cmp(&rhs)
                })
            }
        }

        impl Into<Vec<$val>> for $name {
            fn into(self) -> Vec<$val> {
                self.inner
            }
        }

        impl std::default::Default for $name {
            fn default() -> Self {
                Self { inner: std::default::Default::default() }
            }
        }

        impl Extend<$val> for $name {
            fn extend<I>(&mut self, iter: I)
            where
                I: IntoIterator<Item = $val>,
            {
                self.inner.extend(iter);
                self.sort();
            }
        }

        impl std::iter::FromIterator<$val> for $name {
            fn from_iter<I: std::iter::IntoIterator<Item=$val>>(iter: I) -> Self {
                let inner = Vec::from_iter(iter);
                From::from(inner)
            }
        }

        impl From<Vec<$val>> for $name {
            fn from(vec: Vec<$val>) -> Self {
                let mut res = Self { inner: vec };
                res.sort();
                res
            }
        }

        impl std::ops::Deref for $name {
            type Target = Vec<$val>;

            fn deref(&self) -> &Self::Target {
                &self.inner
            }
        }

        impl std::borrow::Borrow<[$val]> for $name {
            fn borrow(&self) -> &[$val] {
                &self.inner
            }
        }

        impl AsRef<[$val]> for $name {
            fn as_ref(&self) -> &[$val] {
                &self.inner
            }
        }

        impl AsRef<Vec<$val>> for $name {
            fn as_ref(&self) -> &Vec<$val> {
                &self.inner
            }
        }
    }
}

#[cfg(test)]
#[allow(unused_variables)]
mod tests {
    #[test]
    fn simple() {
        sortedvec! {
            #[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Hash)]
            pub struct TestVec {
                fn derive_key(x: &u32) -> u32 { *x }
            }
        }

        let sv: TestVec = (0u32..10).collect();
        assert!(sv.find(&5) == Some(&5));
        assert_eq!(10, sv.len());
        let v: Vec<_> = sv.clone().into();
    }

    #[test]
    fn more_complex() {
        #[derive(Debug, Default)]
        struct SomeComplexValue {
            some_map: std::collections::HashMap<String, std::path::PathBuf>,
            name: String,
            prio: u64,
        }

        sortedvec! {
            /// Vec of `SomeComplexValues` that allows quick
            /// lookup by (name, prio) keys
            #[derive(Debug)]
            struct ComplexMap {
                fn derive_key(val: &SomeComplexValue) -> (&str, u64) {
                    (val.name.as_str(), val.prio)
                }
            }
        }

        let mut sv = ComplexMap::default();
        sv.insert(SomeComplexValue {
            some_map: Default::default(),
            name: "test".to_owned(),
            prio: 0,
        });

        assert!(sv.len() == 1);
        assert!(sv.find(&("hello", 1)).is_none());
        assert!(sv.remove(&("test", 0)).is_some());
        assert!(sv.is_empty());

        for val in sv {
            println!("{:?}", val);
        }
    }
}

#[cfg(test)]
mod slices_tests {
    use super::*;

    sortedvec_slicekey! {
        #[derive(Debug, Clone)]
        pub struct SortedVecOfListLikes {
            fn derive_key(t: &String) -> &[u8] { t.as_bytes() }
        }
    }

    #[quickcheck]
    fn string_in_vec(mut xs: Vec<String>, s: String) -> bool {
        let s_clone = s.clone();
        xs.insert(xs.len() / 2, s_clone);
        let sorted = SortedVecOfListLikes::from(xs);

        sorted.find(s.as_bytes()).is_some()
    }

    #[quickcheck]
    fn strings_in_vec(xs: Vec<String>) -> bool {
        let sorted = SortedVecOfListLikes::from(xs.clone());

        xs.into_iter()
            .all(|s| sorted.find(s.as_bytes()).unwrap() == &s)
    }

    #[quickcheck]
    fn in_sorted_iff_in_source(xs: Vec<String>, s: String) -> bool {
        let sorted = SortedVecOfListLikes::from(xs.clone());

        sorted.find(&s).is_some() == xs.into_iter().any(|x| x == s)
    }

    #[test]
    fn bad_case() {
        let case = &[
            "\u{80}", "\u{80}", "\u{80}", "\u{80}", "", "\u{80}", "", "", "¤", "", "", "\u{80}",
            "", "\u{80}", "", "\u{80}", "", "¤\u{0}", "¥", "", "", "¥", "", "\u{80}", "", "", "¥",
            "\u{80}", "",
        ];
        let sorted: SortedVecOfListLikes = case.into_iter().map(|&x| x.to_owned()).collect();

        for s in case {
            assert_eq!(s, sorted.find(s.as_bytes()).unwrap());
        }
    }
}