1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
// Sorceress
// Copyright (C) 2021  Wesley Merkel
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <https://www.gnu.org/licenses/>.

//! A module for defining patterns.
//!
//! This module provides an expressive API for describing sequences of events. A [`Pattern`] is a
//! collection of events with timing information. Patterns can be embedded into other paterns to
//! form larger sequences or can be combined in parallel to allow complex sections of music to be
//! decomposed into small independent sequences.
//!
//! # Examples
//!
//! ```
//! use sorceress::pattern::{sequence, Event, Pattern};
//!
//! let pattern: Pattern<String> = sequence(|s| {
//!     s.play(1.0, "hello");
//!     s.rest(1.0);
//!     s.parallel(|p| {
//!         p.play(2.0, "there");
//!         p.sequence(|s| {
//!             s.play(1.0, "my");
//!             s.play(1.0, "friend");
//!         });
//!     });
//! });
//!
//! let mut events = pattern.into_iter();
//!
//! assert_eq!(Some(Event::new(1.0, "hello")), events.next());
//! assert_eq!(Some(Event::rest(1.0)), events.next());
//! assert_eq!(Some(Event::new(0.0, "there")), events.next());
//! assert_eq!(Some(Event::new(1.0, "my")), events.next());
//! assert_eq!(Some(Event::new(1.0, "friend")), events.next());
//! assert_eq!(None, events.next());
//! ```
//!
//! # Splitting Up Patterns
//!
//! If you would like to split up of a large pattern for the sake of readability or reuse, you
//! should create a function that returns a [`Pattern`] and embed it into the larger pattern.
//! Prefer this over creating functions that take [`Sequence`] or [`Parallel`] types as arguments.
//!
//! ```
//! use sorceress::pattern::{parallel, Pattern, Sequence};
//!
//! fn section() -> Pattern<String> {
//!     parallel(|p| {
//!         // Do this.
//!         p.embed(chord());
//!
//!         // Not this.
//!         p.sequence(bass);
//!     })
//! }
//!
//! // Do this.
//! fn chord() -> Pattern<String> {
//!     parallel(|p| {
//!         p.play(4.0, "F4");
//!         p.play(4.0, "A5");
//!         p.play(4.0, "C5");
//!     })
//! }
//!
//! // Not this.
//! fn bass(s: &mut Sequence<String>) {
//!     s.play(1.0, "E2");
//!     s.play(1.0, "C2");
//!     s.play(2.0, "F2");
//! }
//! ```

use std::iter::{self, Peekable};

pub mod player;

/// A collection of events with timing information.
///
/// Patterns can be created using the [`sequence`] and [`parallel`] functions. Patterns can be
/// turned into flat sequences of events using [`Pattern::into_iter`]. See [the module level
/// documentation](self) for more.
#[derive(Debug, Clone, PartialEq, PartialOrd)]
pub struct Pattern<M>(PatternInner<M>);

#[derive(Debug, Clone, PartialEq, PartialOrd)]
enum PatternInner<M> {
    Event(Event<M>),
    Parallel(Vec<Pattern<M>>),
    Sequence(Vec<Pattern<M>>),
}

/// An occurrence with timing information.
///
/// Events are used in Patterns to describe things that occur at a specific time. Events are most
/// commonly used to describe musical events such as a note playing or a pitch changing, but can be
/// used to describe any occurrence. The only information that is required by all events is a
/// `delta` which determines the time delay until the next event in a sequence.
///
/// # Examples
///
/// ```
/// use sorceress::pattern::{Event, EventOrRest};
///
/// let event = Event::new(1.0, "hello");
/// let rest = Event::rest(2.0);
///
/// assert_eq!(
///     event,
///     Event {
///         delta: 1.0,
///         event: EventOrRest::Event("hello".to_owned()),
///     }
/// );
/// assert_eq!(
///     rest,
///     Event::<String> {
///         delta: 2.0,
///         event: EventOrRest::Rest,
///     }
/// );
/// ```
#[derive(Debug, Clone, PartialEq, PartialOrd)]
pub struct Event<M> {
    /// The "logical time" delay until the next event. Instead of being specified as a
    /// [`Duration`](std::time::Duration), `delta` is a floating point number. This lets whatever
    /// schedules the event determine how the `delta` value should be intepreted. For example: a
    /// tempo-aware scheduler can intepret the delta as a number of beats.
    pub delta: f64,

    /// The event data or a musical rest.
    pub event: EventOrRest<M>,
}

impl<M> Event<M> {
    /// Create a new event.
    pub fn new(delta: f64, event: impl Into<M>) -> Event<M> {
        Event {
            delta,
            event: EventOrRest::Event(event.into()),
        }
    }

    /// Create a rest event.
    pub fn rest(delta: f64) -> Event<M> {
        Event {
            delta,
            event: EventOrRest::Rest,
        }
    }
}

/// Represents either the data of an event or a musical rest.
#[derive(Debug, Clone, PartialEq, PartialOrd)]
pub enum EventOrRest<M> {
    Event(M),
    Rest,
}

/// Create a new sequence of events.
///
/// The given closure will be passed a [`Sequence`] value which can be used to add events and other
/// patterns to this sequence. See the methods on [`Sequence`] for more details.
///
/// The argument passed to the given closure is conventally called `s` because it is repeated so
/// often in pattern definitions.
pub fn sequence<M>(f: impl FnOnce(&mut Sequence<M>)) -> Pattern<M> {
    let mut seq = Sequence(Patterns::new());
    f(&mut seq);
    let Sequence(Patterns(patterns)) = seq;
    Pattern(PatternInner::Sequence(patterns))
}

/// A builder for sequential patterns.
///
/// Passed to the closure given to [`sequence`] and [`Parallel::sequence`];
#[derive(Debug)]
pub struct Sequence<M>(Patterns<M>);

impl<M> Sequence<M> {
    /// Add an event to this sequence.
    ///
    /// # Examples
    ///
    /// ```
    /// use sorceress::pattern::{sequence, Event, Pattern};
    ///
    /// let pattern: Pattern<String> = sequence(|s| {
    ///     s.play(1.0, "B");
    ///     s.play(1.0, "A");
    ///     s.play(1.0, "C");
    /// });
    ///
    /// let mut events = pattern.into_iter();
    ///
    /// assert_eq!(Some(Event::new(1.0, "B")), events.next());
    /// assert_eq!(Some(Event::new(1.0, "A")), events.next());
    /// assert_eq!(Some(Event::new(1.0, "C")), events.next());
    /// assert_eq!(None, events.next());
    /// ```
    pub fn play(&mut self, delta: f64, event: impl Into<M>) {
        self.0.play(delta, event.into())
    }

    /// Add a rest to the sequence.
    ///
    /// Rests are essentially events without any event data. Rests signal to schedulers that no
    /// actions should be taken at this time but the logical time of the sequence should move
    /// forward. Rests are required to delay the first event in a sequence.
    pub fn rest(&mut self, delta: f64) {
        self.0.rest(delta)
    }

    /// Extend this sequence with another pattern.
    ///
    /// # Examples
    ///
    /// ```
    /// use sorceress::pattern::{sequence, Event, Pattern};
    ///
    /// let section1: Pattern<String> = sequence(|p| {
    ///     p.play(1.0, "hello");
    ///     p.play(1.0, "there");
    /// });
    /// let section2: Pattern<String> = sequence(|s| {
    ///     s.play(1.0, "dear");
    ///     s.play(1.0, "friend");
    /// });
    /// let pattern: Pattern<String> = sequence(|s| {
    ///     s.embed(section1);
    ///     s.embed(section2);
    /// });
    ///
    /// let mut events = pattern.into_iter();
    ///
    /// assert_eq!(Some(Event::new(1.0, "hello")), events.next());
    /// assert_eq!(Some(Event::new(1.0, "there")), events.next());
    /// assert_eq!(Some(Event::new(1.0, "dear")), events.next());
    /// assert_eq!(Some(Event::new(1.0, "friend")), events.next());
    /// assert_eq!(None, events.next());
    /// ```
    pub fn embed(&mut self, pattern: Pattern<M>) {
        self.0.embed(pattern)
    }

    /// Create a parallel pattern and embed it into this sequence.
    ///
    /// This method is simply shorthand for `self.embed(parallel(f))`.
    pub fn parallel(&mut self, f: impl FnOnce(&mut Parallel<M>)) {
        self.0.embed(parallel(f))
    }
}

/// Play multiple sequences at the same time.
///
/// The given closure will be passed a [`Parallel`] value which can be used to add events and other
/// patterns to this collection. See the methods on [`Parallel`] for more details.
///
/// The argument passed to the given closure is conventally called `p` because it is repeated so
/// often in pattern definitions.
pub fn parallel<M>(f: impl FnOnce(&mut Parallel<M>)) -> Pattern<M> {
    let mut seq = Parallel(Patterns::new());
    f(&mut seq);
    let Parallel(Patterns(patterns)) = seq;
    Pattern(PatternInner::Parallel(patterns))
}

/// A builder for parallel patterns.
///
/// Passed to the closure given to [`parallel`] and [`Sequence::parallel`];
#[derive(Debug)]
pub struct Parallel<M>(Patterns<M>);

impl<M> Parallel<M> {
    /// Play an event in parallel with other sequences and events in this parallel pattern.
    ///
    /// # Examples
    ///
    /// This can be used to express [musical chords] in a pattern.
    ///
    /// ```
    /// use sorceress::pattern::{parallel, Event, Pattern};
    ///
    /// let pattern: Pattern<String> = parallel(|p| {
    ///     p.play(1.0, "F");
    ///     p.play(1.0, "A");
    ///     p.play(1.0, "C");
    /// });
    ///
    /// let mut events = pattern.into_iter();
    ///
    /// assert_eq!(Some(Event::new(0.0, "F")), events.next());
    /// assert_eq!(Some(Event::new(0.0, "A")), events.next());
    /// assert_eq!(Some(Event::new(1.0, "C")), events.next());
    /// assert_eq!(None, events.next());
    /// ```
    ///
    /// [musical chords]: https://en.wikipedia.org/wiki/Chord_(music)
    pub fn play(&mut self, delta: f64, event: impl Into<M>) {
        self.0.play(delta, event.into())
    }

    /// Play another [`Pattern`] in parallel.
    ///
    /// # Examples
    ///
    /// ```
    /// use sorceress::pattern::{parallel, sequence, Event, Pattern};
    ///
    /// let chord: Pattern<String> = parallel(|p| {
    ///     p.play(4.0, "F4");
    ///     p.play(4.0, "A5");
    ///     p.play(4.0, "C5");
    /// });
    /// let bass: Pattern<String> = sequence(|s| {
    ///     s.play(1.0, "E2");
    ///     s.play(1.0, "C2");
    ///     s.play(2.0, "F2");
    /// });
    /// let pattern: Pattern<String> = parallel(|p| {
    ///     p.embed(chord);
    ///     p.embed(bass);
    /// });
    ///
    /// let mut events = pattern.into_iter();
    ///
    /// assert_eq!(Some(Event::new(0.0, "F4")), events.next());
    /// assert_eq!(Some(Event::new(0.0, "A5")), events.next());
    /// assert_eq!(Some(Event::new(0.0, "C5")), events.next());
    /// assert_eq!(Some(Event::new(1.0, "E2")), events.next());
    /// assert_eq!(Some(Event::new(1.0, "C2")), events.next());
    /// assert_eq!(Some(Event::new(2.0, "F2")), events.next());
    /// assert_eq!(None, events.next());
    /// ```
    pub fn embed(&mut self, pattern: Pattern<M>) {
        self.0.embed(pattern)
    }

    /// Create another sequence and play it in parallel.
    ///
    /// This method is simply shorthand for `self.embed(sequence(f))`.
    pub fn sequence(&mut self, f: impl FnOnce(&mut Sequence<M>)) {
        self.0.embed(sequence(f));
    }
}

#[derive(Debug)]
struct Patterns<M>(Vec<Pattern<M>>);

impl<M> Patterns<M> {
    fn new() -> Patterns<M> {
        Patterns(Vec::new())
    }

    fn play(&mut self, delta: f64, event: M) {
        self.0.push(Pattern(PatternInner::Event(Event {
            delta,
            event: EventOrRest::Event(event),
        })));
    }

    fn rest(&mut self, delta: f64) {
        self.0.push(Pattern(PatternInner::Event(Event {
            delta,
            event: EventOrRest::Rest,
        })));
    }

    fn embed(&mut self, pattern: Pattern<M>) {
        self.0.push(pattern);
    }
}

/// An iterator that transforms a pattern into a flat sequence of events.
///
/// Returned by the `into_iter` method on [`Pattern`].
#[must_use]
#[derive(Debug)]
pub struct IntoIter<M>(IntoIterInner<M>);

#[derive(Debug)]
enum IntoIterInner<M> {
    Event(iter::Once<Event<M>>),
    Parallel(ParallelIter<M>),
    Sequence(Box<SequenceIntoIter<M>>),
}

type SequenceIntoIter<M> =
    iter::FlatMap<std::vec::IntoIter<Pattern<M>>, IntoIter<M>, fn(Pattern<M>) -> IntoIter<M>>;

impl<M> IntoIterator for Pattern<M> {
    type Item = Event<M>;
    type IntoIter = IntoIter<M>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter(match self.0 {
            PatternInner::Event(event) => IntoIterInner::Event(iter::once(event)),
            PatternInner::Parallel(patterns) => {
                IntoIterInner::Parallel(ParallelIter::new(patterns))
            }
            PatternInner::Sequence(patterns) => {
                IntoIterInner::Sequence(Box::new(patterns.into_iter().flat_map(Pattern::into_iter)))
            }
        })
    }
}

impl<M> Iterator for IntoIter<M> {
    type Item = Event<M>;

    fn next(&mut self) -> Option<Self::Item> {
        match self.0 {
            IntoIterInner::Event(ref mut iter) => iter.next(),
            IntoIterInner::Parallel(ref mut iter) => iter.next(),
            IntoIterInner::Sequence(ref mut iter) => iter.next(),
        }
    }
}

#[must_use]
#[derive(Debug)]
struct ParallelIter<M> {
    merged: Peekable<Merged<M>>,
}

impl<M> ParallelIter<M> {
    fn new(patterns: Vec<Pattern<M>>) -> Self {
        Self {
            merged: Merged::new(patterns).peekable(),
        }
    }
}

impl<M> Iterator for ParallelIter<M> {
    type Item = Event<M>;

    fn next(&mut self) -> Option<Self::Item> {
        let (position, mut event) = self.merged.next()?;
        if let Some((next_position, _)) = self.merged.peek() {
            event.delta = next_position - position;
        }
        Some(event)
    }
}

#[must_use]
#[derive(Debug)]
struct Merged<M> {
    iters: Vec<Peekable<Position<M>>>,
}

impl<M> Merged<M> {
    fn new(patterns: Vec<Pattern<M>>) -> Self {
        Self {
            iters: patterns
                .into_iter()
                .map(|pattern| Position::new(pattern.into_iter()).peekable())
                .collect(),
        }
    }
}

impl<M> Iterator for Merged<M> {
    type Item = (f64, Event<M>);

    fn next(&mut self) -> Option<Self::Item> {
        self.iters
            .iter_mut()
            .flat_map(|iter| {
                let (position, _) = iter.peek()?;
                Some((*position, iter))
            })
            .min_by(|(position1, _), (position2, _)| position1.partial_cmp(position2).unwrap())
            .and_then(|(_, iter)| iter.next())
    }
}

#[must_use]
#[derive(Debug)]
struct Position<M> {
    position: f64,
    iter: IntoIter<M>,
}

impl<M> Position<M> {
    fn new(iter: IntoIter<M>) -> Self {
        Self {
            position: 0.0,
            iter,
        }
    }
}

impl<M> Iterator for Position<M> {
    type Item = (f64, Event<M>);

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|event| {
            let position = self.position;
            self.position += event.delta;
            (position, event)
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn parallel_test_empty_seq() {
        assert!(stream_pattern(sequence(|_| {})).is_empty());
    }

    #[test]
    fn parallel_test_left_identity() {
        let a: Pattern<i32> = sequence(|s| {
            s.play(1.0, 0);
            s.play(1.0, 0);
        });
        let b: Pattern<i32> = sequence(|_| {});
        assert_eq!(
            stream_pattern(a.clone()),
            stream_pattern(parallel(|p| {
                p.embed(a);
                p.embed(b);
            })),
        );
    }

    #[test]
    fn parallel_test_right_identity() {
        let a: Pattern<i32> = sequence(|_| {});
        let b: Pattern<i32> = sequence(|s| {
            s.play(1.0, 0);
            s.play(1.0, 0);
        });
        assert_eq!(
            stream_pattern(b.clone()),
            stream_pattern(parallel(|p| {
                p.embed(a);
                p.embed(b);
            })),
        );
    }

    #[test]
    fn parallel_test_delta_adjustment() {
        let a: Pattern<i32> = sequence(|s| {
            s.play(1.0, 1);
            s.play(1.0, 2);
        });
        let b: Pattern<i32> = sequence(|s| {
            s.play(1.0, 3);
            s.play(1.0, 4);
        });
        assert_eq!(
            vec![
                Event::new(0.0, 1),
                Event::new(1.0, 3),
                Event::new(0.0, 2),
                Event::new(1.0, 4)
            ],
            stream_pattern(parallel(|p| {
                p.embed(a);
                p.embed(b);
            })),
        );
    }

    #[test]
    fn parallel_test_uneven_lengths() {
        let a: Pattern<i32> = sequence(|s| s.play(1.0, 1));
        let b: Pattern<i32> = sequence(|s| {
            s.play(1.0, 2);
            s.play(1.0, 3);
        });
        assert_eq!(
            vec![Event::new(0.0, 1), Event::new(1.0, 2), Event::new(1.0, 3),],
            stream_pattern(parallel(|p| {
                p.embed(a);
                p.embed(b)
            })),
        );
    }

    fn stream_pattern(pattern: Pattern<i32>) -> Vec<Event<i32>> {
        pattern.into_iter().collect()
    }
}