1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
use std::u32;
use std::sync::Arc;
use std::ops::Range;
use std::cmp;
use parking_lot::RwLock;
use elements::{MemoryType, ResizableLimits};
use interpreter::Error;
use interpreter::module::check_limits;

/// Linear memory page size.
pub const LINEAR_MEMORY_PAGE_SIZE: u32 = 65536;
/// Maximal number of pages.
const LINEAR_MEMORY_MAX_PAGES: u32 = 65536;

/// Linear memory instance.
pub struct MemoryInstance {
	/// Memofy limits.
	limits: ResizableLimits,
	/// Linear memory buffer.
	buffer: RwLock<Vec<u8>>,
	/// Maximum buffer size.
	maximum_size: u32,
}

struct CheckedRegion<'a, B: 'a> where B: ::std::ops::Deref<Target=Vec<u8>> {
	buffer: &'a B,
	offset: usize,
	size: usize,
}

impl<'a, B: 'a> CheckedRegion<'a, B> where B: ::std::ops::Deref<Target=Vec<u8>> {
	fn range(&self) -> Range<usize> {
		self.offset..self.offset+self.size
	}

	fn slice(&self) -> &[u8] {
		&self.buffer[self.range()]
	}

	fn intersects(&self, other: &Self) -> bool {
		let low = cmp::max(self.offset, other.offset);
		let high = cmp::min(self.offset + self.size, other.offset + other.size);

		low < high
	}
}

impl MemoryInstance {
	/// Create new linear memory instance.
	pub fn new(memory_type: &MemoryType) -> Result<Arc<Self>, Error> {
		check_limits(memory_type.limits())?;

		let maximum_size = match memory_type.limits().maximum() {
			Some(maximum_pages) if maximum_pages > LINEAR_MEMORY_MAX_PAGES =>
				return Err(Error::Memory(format!("maximum memory size must be at most {} pages", LINEAR_MEMORY_MAX_PAGES))),
			Some(maximum_pages) => maximum_pages.saturating_mul(LINEAR_MEMORY_PAGE_SIZE),
			None => u32::MAX,
		};
		let initial_size = calculate_memory_size(0, memory_type.limits().initial(), maximum_size)
			.ok_or(Error::Memory(format!("initial memory size must be at most {} pages", LINEAR_MEMORY_MAX_PAGES)))?;

		let memory = MemoryInstance {
			limits: memory_type.limits().clone(),
			buffer: RwLock::new(vec![0; initial_size as usize]),
			maximum_size: maximum_size,
		};

		Ok(Arc::new(memory))
	}

	/// Return linear memory limits.
	pub fn limits(&self) -> &ResizableLimits {
		&self.limits
	}

	/// Return linear memory size (in pages).
	pub fn size(&self) -> u32 {
		self.buffer.read().len() as u32 / LINEAR_MEMORY_PAGE_SIZE
	}

	/// Get data at given offset.
	pub fn get(&self, offset: u32, size: usize) -> Result<Vec<u8>, Error> {
		let buffer = self.buffer.read();
		let region = self.checked_region(&buffer, offset as usize, size)?;

		Ok(region.slice().to_vec())
	}

	/// Write memory slice into another slice
	pub fn get_into(&self, offset: u32, target: &mut [u8]) -> Result<(), Error> {
		let buffer = self.buffer.read();
		let region = self.checked_region(&buffer, offset as usize, target.len())?;

		target.copy_from_slice(region.slice());

		Ok(())
	}

	/// Set data at given offset.
	pub fn set(&self, offset: u32, value: &[u8]) -> Result<(), Error> {
		let mut buffer = self.buffer.write();
		let range = self.checked_region(&buffer, offset as usize, value.len())?.range();

		buffer[range].copy_from_slice(value);

		Ok(())
	}

	/// Increases the size of the linear memory by given number of pages.
	/// Returns -1 if allocation fails or previous memory size, if succeeds.
	pub fn grow(&self, pages: u32) -> Result<u32, Error> {
		let mut buffer = self.buffer.write();
		let old_size = buffer.len() as u32;
		match calculate_memory_size(old_size, pages, self.maximum_size) {
			None => Ok(u32::MAX),
			Some(new_size) => {
				buffer.resize(new_size as usize, 0);
				Ok(old_size / LINEAR_MEMORY_PAGE_SIZE)
			},
		}
	}

	fn checked_region<'a, B>(&self, buffer: &'a B, offset: usize, size: usize) -> Result<CheckedRegion<'a, B>, Error>
		where B: ::std::ops::Deref<Target=Vec<u8>>
	{
		let end = offset.checked_add(size)
			.ok_or(Error::Memory(format!("trying to access memory block of size {} from offset {}", size, offset)))?;

		if end > buffer.len() {
			return Err(Error::Memory(format!("trying to access region [{}..{}] in memory [0..{}]", offset, end, buffer.len())));
		}

		Ok(CheckedRegion {
			buffer: buffer,
			offset: offset,
			size: size,
		})
	}

	/// Copy memory region. Semantically equivalent to `memmove`.
	pub fn copy(&self, src_offset: usize, dst_offset: usize, len: usize) -> Result<(), Error> {
		let buffer = self.buffer.write();

		let read_region = self.checked_region(&buffer, src_offset, len)?;
		let write_region = self.checked_region(&buffer, dst_offset, len)?;

		unsafe { ::std::ptr::copy(
			buffer[read_region.range()].as_ptr(),
			buffer[write_region.range()].as_ptr() as *mut _,
			len,
		)}

		Ok(())
	}

	/// Copy memory region, non-overlapping version. Semantically equivalent to `memcpy`,
	/// but returns Error if source overlaping with destination.
	pub fn copy_nonoverlapping(&self, src_offset: usize, dst_offset: usize, len: usize) -> Result<(), Error> {
		let buffer = self.buffer.write();

		let read_region = self.checked_region(&buffer, src_offset, len)?;
		let write_region = self.checked_region(&buffer, dst_offset, len)?;

		if read_region.intersects(&write_region) {
			return Err(Error::Memory(format!("non-overlapping copy is used for overlapping regions")))
		}

		unsafe { ::std::ptr::copy_nonoverlapping(
			buffer[read_region.range()].as_ptr(),
			buffer[write_region.range()].as_ptr() as *mut _,
			len,
		)}

		Ok(())
	}

	/// Clear memory region with a specified value. Semantically equivalent to `memset`.
	pub fn clear(&self, offset: usize, new_val: u8, len: usize) -> Result<(), Error> {
		let mut buffer = self.buffer.write();

		let range = self.checked_region(&buffer, offset, len)?.range();
		for val in &mut buffer[range] { *val = new_val }
		Ok(())
	}

	/// Zero memory region
	pub fn zero(&self, offset: usize, len: usize) -> Result<(), Error> {
		self.clear(offset, 0, len)
	}
}

fn calculate_memory_size(old_size: u32, additional_pages: u32, maximum_size: u32) -> Option<u32> {
	additional_pages
		.checked_mul(LINEAR_MEMORY_PAGE_SIZE)
		.and_then(|size| size.checked_add(old_size))
		.and_then(|size| if size > maximum_size {
			None
		} else {
			Some(size)
		})
}

#[cfg(test)]
mod tests {

	use super::MemoryInstance;
	use interpreter::Error;
	use elements::MemoryType;
	use std::sync::Arc;

	fn create_memory(initial_content: &[u8]) -> Arc<MemoryInstance> {
		let mem = MemoryInstance::new(&MemoryType::new(1, Some(1)))
			.expect("MemoryInstance created successfuly");
		mem.set(0, initial_content).expect("Successful initialize the memory");
		mem
	}

	#[test]
	fn copy_overlaps_1() {
		let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
		mem.copy(0, 4, 6).expect("Successfully copy the elements");
		let result = mem.get(0, 10).expect("Successfully retrieve the result");
		assert_eq!(result, &[0, 1, 2, 3, 0, 1, 2, 3, 4, 5]);
	}

	#[test]
	fn copy_overlaps_2() {
		let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
		mem.copy(4, 0, 6).expect("Successfully copy the elements");
		let result = mem.get(0, 10).expect("Successfully retrieve the result");
		assert_eq!(result, &[4, 5, 6, 7, 8, 9, 6, 7, 8, 9]);
	}

	#[test]
	fn copy_nonoverlapping() {
		let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
		mem.copy_nonoverlapping(0, 10, 10).expect("Successfully copy the elements");
		let result = mem.get(10, 10).expect("Successfully retrieve the result");
		assert_eq!(result, &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
	}

	#[test]
	fn copy_nonoverlapping_overlaps_1() {
		let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
		let result = mem.copy_nonoverlapping(0, 4, 6);
		match result {
			Err(Error::Memory(_)) => {},
			_ => panic!("Expected Error::Memory(_) result, but got {:?}", result),
		}
	}

	#[test]
	fn copy_nonoverlapping_overlaps_2() {
		let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
		let result = mem.copy_nonoverlapping(4, 0, 6);
		match result {
			Err(Error::Memory(_)) => {},
			_ => panic!("Expected Error::Memory(_), but got {:?}", result),
		}
	}

	#[test]
	fn clear() {
		let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
		mem.clear(0, 0x4A, 10).expect("To successfully clear the memory");
		let result = mem.get(0, 10).expect("To successfully retrieve the result");
		assert_eq!(result, &[0x4A; 10]);
	}

	#[test]
	fn get_into() {
		let mem = MemoryInstance::new(&MemoryType::new(1, None)).expect("memory instance creation should not fail");
		mem.set(6, &[13, 17, 129]).expect("memory set should not fail");

		let mut data = [0u8; 2];
		mem.get_into(7, &mut data[..]).expect("get_into should not fail");

		assert_eq!(data, [17, 129]);
	}
}