Struct solstice::ClampedF32[][src]

pub struct ClampedF32(_);

An non-NAN f32 value clamped between 0.0 and 1.0, inclusive. This type can be constructed with an f32 which will be clamped into the appropriate range.

Methods from Deref<Target = f32>

pub const RADIX: u321.43.0[src]

pub const MANTISSA_DIGITS: u321.43.0[src]

pub const DIGITS: u321.43.0[src]

pub const EPSILON: f321.43.0[src]

pub const MIN: f321.43.0[src]

pub const MIN_POSITIVE: f321.43.0[src]

pub const MAX: f321.43.0[src]

pub const MIN_EXP: i321.43.0[src]

pub const MAX_EXP: i321.43.0[src]

pub const MIN_10_EXP: i321.43.0[src]

pub const MAX_10_EXP: i321.43.0[src]

pub const NAN: f321.43.0[src]

pub const INFINITY: f321.43.0[src]

pub const NEG_INFINITY: f321.43.0[src]

pub fn as_ne_bytes(&self) -> &[u8; 4][src]

🔬 This is a nightly-only experimental API. (num_as_ne_bytes)

Return the memory representation of this floating point number as a byte array in native byte order.

to_ne_bytes should be preferred over this whenever possible.

Examples

#![feature(num_as_ne_bytes)]
let num = 12.5f32;
let bytes = num.as_ne_bytes();
assert_eq!(
    bytes,
    if cfg!(target_endian = "big") {
        &[0x41, 0x48, 0x00, 0x00]
    } else {
        &[0x00, 0x00, 0x48, 0x41]
    }
);

pub fn total_cmp(&self, other: &f32) -> Ordering[src]

🔬 This is a nightly-only experimental API. (total_cmp)

Returns an ordering between self and other values. Unlike the standard partial comparison between floating point numbers, this comparison always produces an ordering in accordance to the totalOrder predicate as defined in IEEE 754 (2008 revision) floating point standard. The values are ordered in following order:

  • Negative quiet NaN
  • Negative signaling NaN
  • Negative infinity
  • Negative numbers
  • Negative subnormal numbers
  • Negative zero
  • Positive zero
  • Positive subnormal numbers
  • Positive numbers
  • Positive infinity
  • Positive signaling NaN
  • Positive quiet NaN

Note that this function does not always agree with the PartialOrd and PartialEq implementations of f32. In particular, they regard negative and positive zero as equal, while total_cmp doesn’t.

Example

#![feature(total_cmp)]
struct GoodBoy {
    name: String,
    weight: f32,
}

let mut bois = vec![
    GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
    GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
    GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
    GoodBoy { name: "Chonk".to_owned(), weight: f32::INFINITY },
    GoodBoy { name: "Abs. Unit".to_owned(), weight: f32::NAN },
    GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
];

bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));

Trait Implementations

impl Clone for ClampedF32[src]

impl Copy for ClampedF32[src]

impl Debug for ClampedF32[src]

impl Default for ClampedF32[src]

impl Deref for ClampedF32[src]

type Target = f32

The resulting type after dereferencing.

impl Eq for ClampedF32[src]

impl From<f32> for ClampedF32[src]

impl Ord for ClampedF32[src]

impl PartialEq<ClampedF32> for ClampedF32[src]

impl PartialOrd<ClampedF32> for ClampedF32[src]

impl StructuralPartialEq for ClampedF32[src]

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.