1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/*! Access to networking hardware.

The `phy` module deals with the *network devices*. It provides a trait
for transmitting and receiving frames, [Device](trait.Device.html)
and implementations of it:

  * the [_loopback_](struct.Loopback.html), for zero dependency testing;
  * _middleware_ [Tracer](struct.Tracer.html) and
    [FaultInjector](struct.FaultInjector.html), to facilitate debugging;
  * _adapters_ [RawSocket](struct.RawSocket.html) and
    [TunTapInterface](struct.TunTapInterface.html), to transmit and receive frames
    on the host OS.
*/
#![cfg_attr(
    feature = "medium-ethernet",
    doc = r##"
# Examples

An implementation of the [Device](trait.Device.html) trait for a simple hardware
Ethernet controller could look as follows:

```rust
use smoltcp::phy::{self, DeviceCapabilities, Device, Medium};
use smoltcp::time::Instant;

struct StmPhy {
    rx_buffer: [u8; 1536],
    tx_buffer: [u8; 1536],
}

impl<'a> StmPhy {
    fn new() -> StmPhy {
        StmPhy {
            rx_buffer: [0; 1536],
            tx_buffer: [0; 1536],
        }
    }
}

impl phy::Device for StmPhy {
    type RxToken<'a> = StmPhyRxToken<'a> where Self: 'a;
    type TxToken<'a> = StmPhyTxToken<'a> where Self: 'a;

    fn receive(&mut self, _timestamp: Instant) -> Option<(Self::RxToken<'_>, Self::TxToken<'_>)> {
        Some((StmPhyRxToken(&mut self.rx_buffer[..]),
              StmPhyTxToken(&mut self.tx_buffer[..])))
    }

    fn transmit(&mut self, _timestamp: Instant) -> Option<Self::TxToken<'_>> {
        Some(StmPhyTxToken(&mut self.tx_buffer[..]))
    }

    fn capabilities(&self) -> DeviceCapabilities {
        let mut caps = DeviceCapabilities::default();
        caps.max_transmission_unit = 1536;
        caps.max_burst_size = Some(1);
        caps.medium = Medium::Ethernet;
        caps
    }
}

struct StmPhyRxToken<'a>(&'a mut [u8]);

impl<'a> phy::RxToken for StmPhyRxToken<'a> {
    fn consume<R, F>(mut self, f: F) -> R
        where F: FnOnce(&mut [u8]) -> R
    {
        // TODO: receive packet into buffer
        let result = f(&mut self.0);
        println!("rx called");
        result
    }
}

struct StmPhyTxToken<'a>(&'a mut [u8]);

impl<'a> phy::TxToken for StmPhyTxToken<'a> {
    fn consume<R, F>(self, len: usize, f: F) -> R
        where F: FnOnce(&mut [u8]) -> R
    {
        let result = f(&mut self.0[..len]);
        println!("tx called {}", len);
        // TODO: send packet out
        result
    }
}
```
"##
)]

use crate::time::Instant;

#[cfg(all(
    any(feature = "phy-raw_socket", feature = "phy-tuntap_interface"),
    unix
))]
mod sys;

mod fault_injector;
mod fuzz_injector;
#[cfg(feature = "alloc")]
mod loopback;
mod pcap_writer;
#[cfg(all(feature = "phy-raw_socket", unix))]
mod raw_socket;
mod tracer;
#[cfg(all(
    feature = "phy-tuntap_interface",
    any(target_os = "linux", target_os = "android")
))]
mod tuntap_interface;

#[cfg(all(
    any(feature = "phy-raw_socket", feature = "phy-tuntap_interface"),
    unix
))]
pub use self::sys::wait;

pub use self::fault_injector::FaultInjector;
pub use self::fuzz_injector::{FuzzInjector, Fuzzer};
#[cfg(feature = "alloc")]
pub use self::loopback::Loopback;
pub use self::pcap_writer::{PcapLinkType, PcapMode, PcapSink, PcapWriter};
#[cfg(all(feature = "phy-raw_socket", unix))]
pub use self::raw_socket::RawSocket;
pub use self::tracer::Tracer;
#[cfg(all(
    feature = "phy-tuntap_interface",
    any(target_os = "linux", target_os = "android")
))]
pub use self::tuntap_interface::TunTapInterface;

/// Metadata associated to a packet.
///
/// The packet metadata is a set of attributes associated to network packets
/// as they travel up or down the stack. The metadata is get/set by the
/// [`Device`] implementations or by the user when sending/receiving packets from a
/// socket.
///
/// Metadata fields are enabled via Cargo features. If no field is enabled, this
/// struct becomes zero-sized, which allows the compiler to optimize it out as if
/// the packet metadata mechanism didn't exist at all.
///
/// Currently only UDP sockets allow setting/retrieving packet metadata. The metadata
/// for packets emitted with other sockets will be all default values.
///
/// This struct is marked as `#[non_exhaustive]`. This means it is not possible to
/// create it directly by specifying all fields. You have to instead create it with
/// default values and then set the fields you want. This makes adding metadata
/// fields a non-breaking change.
///
/// ```rust
/// let mut meta = smoltcp::phy::PacketMeta::default();
/// #[cfg(feature = "packetmeta-id")]
/// {
///     meta.id = 15;
/// }
/// ```
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy, Default)]
#[non_exhaustive]
pub struct PacketMeta {
    #[cfg(feature = "packetmeta-id")]
    pub id: u32,
}

/// A description of checksum behavior for a particular protocol.
#[derive(Debug, Clone, Copy, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Checksum {
    /// Verify checksum when receiving and compute checksum when sending.
    #[default]
    Both,
    /// Verify checksum when receiving.
    Rx,
    /// Compute checksum before sending.
    Tx,
    /// Ignore checksum completely.
    None,
}

impl Checksum {
    /// Returns whether checksum should be verified when receiving.
    pub fn rx(&self) -> bool {
        match *self {
            Checksum::Both | Checksum::Rx => true,
            _ => false,
        }
    }

    /// Returns whether checksum should be verified when sending.
    pub fn tx(&self) -> bool {
        match *self {
            Checksum::Both | Checksum::Tx => true,
            _ => false,
        }
    }
}

/// A description of checksum behavior for every supported protocol.
#[derive(Debug, Clone, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub struct ChecksumCapabilities {
    pub ipv4: Checksum,
    pub udp: Checksum,
    pub tcp: Checksum,
    #[cfg(feature = "proto-ipv4")]
    pub icmpv4: Checksum,
    #[cfg(feature = "proto-ipv6")]
    pub icmpv6: Checksum,
}

impl ChecksumCapabilities {
    /// Checksum behavior that results in not computing or verifying checksums
    /// for any of the supported protocols.
    pub fn ignored() -> Self {
        ChecksumCapabilities {
            ipv4: Checksum::None,
            udp: Checksum::None,
            tcp: Checksum::None,
            #[cfg(feature = "proto-ipv4")]
            icmpv4: Checksum::None,
            #[cfg(feature = "proto-ipv6")]
            icmpv6: Checksum::None,
        }
    }
}

/// A description of device capabilities.
///
/// Higher-level protocols may achieve higher throughput or lower latency if they consider
/// the bandwidth or packet size limitations.
#[derive(Debug, Clone, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub struct DeviceCapabilities {
    /// Medium of the device.
    ///
    /// This indicates what kind of packet the sent/received bytes are, and determines
    /// some behaviors of Interface. For example, ARP/NDISC address resolution is only done
    /// for Ethernet mediums.
    pub medium: Medium,

    /// Maximum transmission unit.
    ///
    /// The network device is unable to send or receive frames larger than the value returned
    /// by this function.
    ///
    /// For Ethernet devices, this is the maximum Ethernet frame size, including the Ethernet header (14 octets), but
    /// *not* including the Ethernet FCS (4 octets). Therefore, Ethernet MTU = IP MTU + 14.
    ///
    /// Note that in Linux and other OSes, "MTU" is the IP MTU, not the Ethernet MTU, even for Ethernet
    /// devices. This is a common source of confusion.
    ///
    /// Most common IP MTU is 1500. Minimum is 576 (for IPv4) or 1280 (for IPv6). Maximum is 9216 octets.
    pub max_transmission_unit: usize,

    /// Maximum burst size, in terms of MTU.
    ///
    /// The network device is unable to send or receive bursts large than the value returned
    /// by this function.
    ///
    /// If `None`, there is no fixed limit on burst size, e.g. if network buffers are
    /// dynamically allocated.
    pub max_burst_size: Option<usize>,

    /// Checksum behavior.
    ///
    /// If the network device is capable of verifying or computing checksums for some protocols,
    /// it can request that the stack not do so in software to improve performance.
    pub checksum: ChecksumCapabilities,
}

impl DeviceCapabilities {
    pub fn ip_mtu(&self) -> usize {
        match self.medium {
            #[cfg(feature = "medium-ethernet")]
            Medium::Ethernet => {
                self.max_transmission_unit - crate::wire::EthernetFrame::<&[u8]>::header_len()
            }
            #[cfg(feature = "medium-ip")]
            Medium::Ip => self.max_transmission_unit,
            #[cfg(feature = "medium-ieee802154")]
            Medium::Ieee802154 => self.max_transmission_unit, // TODO(thvdveld): what is the MTU for Medium::IEEE802
        }
    }
}

/// Type of medium of a device.
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Medium {
    /// Ethernet medium. Devices of this type send and receive Ethernet frames,
    /// and interfaces using it must do neighbor discovery via ARP or NDISC.
    ///
    /// Examples of devices of this type are Ethernet, WiFi (802.11), Linux `tap`, and VPNs in tap (layer 2) mode.
    #[cfg(feature = "medium-ethernet")]
    Ethernet,

    /// IP medium. Devices of this type send and receive IP frames, without an
    /// Ethernet header. MAC addresses are not used, and no neighbor discovery (ARP, NDISC) is done.
    ///
    /// Examples of devices of this type are the Linux `tun`, PPP interfaces, VPNs in tun (layer 3) mode.
    #[cfg(feature = "medium-ip")]
    Ip,

    #[cfg(feature = "medium-ieee802154")]
    Ieee802154,
}

impl Default for Medium {
    fn default() -> Medium {
        #[cfg(feature = "medium-ethernet")]
        return Medium::Ethernet;
        #[cfg(all(feature = "medium-ip", not(feature = "medium-ethernet")))]
        return Medium::Ip;
        #[cfg(all(
            feature = "medium-ieee802154",
            not(feature = "medium-ip"),
            not(feature = "medium-ethernet")
        ))]
        return Medium::Ieee802154;
        #[cfg(all(
            not(feature = "medium-ip"),
            not(feature = "medium-ethernet"),
            not(feature = "medium-ieee802154")
        ))]
        return panic!("No medium enabled");
    }
}

/// An interface for sending and receiving raw network frames.
///
/// The interface is based on _tokens_, which are types that allow to receive/transmit a
/// single packet. The `receive` and `transmit` functions only construct such tokens, the
/// real sending/receiving operation are performed when the tokens are consumed.
pub trait Device {
    type RxToken<'a>: RxToken
    where
        Self: 'a;
    type TxToken<'a>: TxToken
    where
        Self: 'a;

    /// Construct a token pair consisting of one receive token and one transmit token.
    ///
    /// The additional transmit token makes it possible to generate a reply packet based
    /// on the contents of the received packet. For example, this makes it possible to
    /// handle arbitrarily large ICMP echo ("ping") requests, where the all received bytes
    /// need to be sent back, without heap allocation.
    ///
    /// The timestamp must be a number of milliseconds, monotonically increasing since an
    /// arbitrary moment in time, such as system startup.
    fn receive(&mut self, timestamp: Instant) -> Option<(Self::RxToken<'_>, Self::TxToken<'_>)>;

    /// Construct a transmit token.
    ///
    /// The timestamp must be a number of milliseconds, monotonically increasing since an
    /// arbitrary moment in time, such as system startup.
    fn transmit(&mut self, timestamp: Instant) -> Option<Self::TxToken<'_>>;

    /// Get a description of device capabilities.
    fn capabilities(&self) -> DeviceCapabilities;
}

/// A token to receive a single network packet.
pub trait RxToken {
    /// Consumes the token to receive a single network packet.
    ///
    /// This method receives a packet and then calls the given closure `f` with the raw
    /// packet bytes as argument.
    fn consume<R, F>(self, f: F) -> R
    where
        F: FnOnce(&mut [u8]) -> R;

    /// The Packet ID associated with the frame received by this [`RxToken`]
    fn meta(&self) -> PacketMeta {
        PacketMeta::default()
    }
}

/// A token to transmit a single network packet.
pub trait TxToken {
    /// Consumes the token to send a single network packet.
    ///
    /// This method constructs a transmit buffer of size `len` and calls the passed
    /// closure `f` with a mutable reference to that buffer. The closure should construct
    /// a valid network packet (e.g. an ethernet packet) in the buffer. When the closure
    /// returns, the transmit buffer is sent out.
    fn consume<R, F>(self, len: usize, f: F) -> R
    where
        F: FnOnce(&mut [u8]) -> R;

    /// The Packet ID to be associated with the frame to be transmitted by this [`TxToken`].
    #[allow(unused_variables)]
    fn set_meta(&mut self, meta: PacketMeta) {}
}