1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
use core::fmt;
use byteorder::{ByteOrder, NetworkEndian};

use crate::{Error, Result};

pub use super::EthernetProtocol as Protocol;

enum_with_unknown! {
    /// ARP hardware type.
    pub enum Hardware(u16) {
        Ethernet = 1
    }
}

enum_with_unknown! {
    /// ARP operation type.
    pub enum Operation(u16) {
        Request = 1,
        Reply = 2
    }
}

/// A read/write wrapper around an Address Resolution Protocol packet buffer.
#[derive(Debug, PartialEq, Clone)]
pub struct Packet<T: AsRef<[u8]>> {
    buffer: T
}

mod field {
    #![allow(non_snake_case)]

    use crate::wire::field::*;

    pub const HTYPE: Field = 0..2;
    pub const PTYPE: Field = 2..4;
    pub const HLEN:  usize = 4;
    pub const PLEN:  usize = 5;
    pub const OPER:  Field = 6..8;

    #[inline]
    pub fn SHA(hardware_len: u8, _protocol_len: u8) -> Field {
        let start = OPER.end;
        start..(start + hardware_len as usize)
    }

    #[inline]
    pub fn SPA(hardware_len: u8, protocol_len: u8) -> Field {
        let start = SHA(hardware_len, protocol_len).end;
        start..(start + protocol_len as usize)
    }

    #[inline]
    pub fn THA(hardware_len: u8, protocol_len: u8) -> Field {
        let start = SPA(hardware_len, protocol_len).end;
        start..(start + hardware_len as usize)
    }

    #[inline]
    pub fn TPA(hardware_len: u8, protocol_len: u8) -> Field {
        let start = THA(hardware_len, protocol_len).end;
        start..(start + protocol_len as usize)
    }
}

impl<T: AsRef<[u8]>> Packet<T> {
    /// Imbue a raw octet buffer with ARP packet structure.
    pub fn new_unchecked(buffer: T) -> Packet<T> {
        Packet { buffer }
    }

    /// Shorthand for a combination of [new_unchecked] and [check_len].
    ///
    /// [new_unchecked]: #method.new_unchecked
    /// [check_len]: #method.check_len
    pub fn new_checked(buffer: T) -> Result<Packet<T>> {
        let packet = Self::new_unchecked(buffer);
        packet.check_len()?;
        Ok(packet)
    }

    /// Ensure that no accessor method will panic if called.
    /// Returns `Err(Error::Truncated)` if the buffer is too short.
    ///
    /// The result of this check is invalidated by calling [set_hardware_len] or
    /// [set_protocol_len].
    ///
    /// [set_hardware_len]: #method.set_hardware_len
    /// [set_protocol_len]: #method.set_protocol_len
    #[allow(clippy::if_same_then_else)]
    pub fn check_len(&self) -> Result<()> {
        let len = self.buffer.as_ref().len();
        if len < field::OPER.end {
            Err(Error::Truncated)
        } else if len < field::TPA(self.hardware_len(), self.protocol_len()).end {
            Err(Error::Truncated)
        } else {
            Ok(())
        }
    }

    /// Consume the packet, returning the underlying buffer.
    pub fn into_inner(self) -> T {
        self.buffer
    }

    /// Return the hardware type field.
    #[inline]
    pub fn hardware_type(&self) -> Hardware {
        let data = self.buffer.as_ref();
        let raw = NetworkEndian::read_u16(&data[field::HTYPE]);
        Hardware::from(raw)
    }

    /// Return the protocol type field.
    #[inline]
    pub fn protocol_type(&self) -> Protocol {
        let data = self.buffer.as_ref();
        let raw = NetworkEndian::read_u16(&data[field::PTYPE]);
        Protocol::from(raw)
    }

    /// Return the hardware length field.
    #[inline]
    pub fn hardware_len(&self) -> u8 {
        let data = self.buffer.as_ref();
        data[field::HLEN]
    }

    /// Return the protocol length field.
    #[inline]
    pub fn protocol_len(&self) -> u8 {
        let data = self.buffer.as_ref();
        data[field::PLEN]
    }

    /// Return the operation field.
    #[inline]
    pub fn operation(&self) -> Operation {
        let data = self.buffer.as_ref();
        let raw = NetworkEndian::read_u16(&data[field::OPER]);
        Operation::from(raw)
    }

    /// Return the source hardware address field.
    pub fn source_hardware_addr(&self) -> &[u8] {
        let data = self.buffer.as_ref();
        &data[field::SHA(self.hardware_len(), self.protocol_len())]
    }

    /// Return the source protocol address field.
    pub fn source_protocol_addr(&self) -> &[u8] {
        let data = self.buffer.as_ref();
        &data[field::SPA(self.hardware_len(), self.protocol_len())]
    }

    /// Return the target hardware address field.
    pub fn target_hardware_addr(&self) -> &[u8] {
        let data = self.buffer.as_ref();
        &data[field::THA(self.hardware_len(), self.protocol_len())]
    }

    /// Return the target protocol address field.
    pub fn target_protocol_addr(&self) -> &[u8] {
        let data = self.buffer.as_ref();
        &data[field::TPA(self.hardware_len(), self.protocol_len())]
    }
}

impl<T: AsRef<[u8]> + AsMut<[u8]>> Packet<T> {
    /// Set the hardware type field.
    #[inline]
    pub fn set_hardware_type(&mut self, value: Hardware) {
        let data = self.buffer.as_mut();
        NetworkEndian::write_u16(&mut data[field::HTYPE], value.into())
    }

    /// Set the protocol type field.
    #[inline]
    pub fn set_protocol_type(&mut self, value: Protocol) {
        let data = self.buffer.as_mut();
        NetworkEndian::write_u16(&mut data[field::PTYPE], value.into())
    }

    /// Set the hardware length field.
    #[inline]
    pub fn set_hardware_len(&mut self, value: u8) {
        let data = self.buffer.as_mut();
        data[field::HLEN] = value
    }

    /// Set the protocol length field.
    #[inline]
    pub fn set_protocol_len(&mut self, value: u8) {
        let data = self.buffer.as_mut();
        data[field::PLEN] = value
    }

    /// Set the operation field.
    #[inline]
    pub fn set_operation(&mut self, value: Operation) {
        let data = self.buffer.as_mut();
        NetworkEndian::write_u16(&mut data[field::OPER], value.into())
    }

    /// Set the source hardware address field.
    ///
    /// # Panics
    /// The function panics if `value` is not `self.hardware_len()` long.
    pub fn set_source_hardware_addr(&mut self, value: &[u8]) {
        let (hardware_len, protocol_len) = (self.hardware_len(), self.protocol_len());
        let data = self.buffer.as_mut();
        data[field::SHA(hardware_len, protocol_len)].copy_from_slice(value)
    }

    /// Set the source protocol address field.
    ///
    /// # Panics
    /// The function panics if `value` is not `self.protocol_len()` long.
    pub fn set_source_protocol_addr(&mut self, value: &[u8]) {
        let (hardware_len, protocol_len) = (self.hardware_len(), self.protocol_len());
        let data = self.buffer.as_mut();
        data[field::SPA(hardware_len, protocol_len)].copy_from_slice(value)
    }

    /// Set the target hardware address field.
    ///
    /// # Panics
    /// The function panics if `value` is not `self.hardware_len()` long.
    pub fn set_target_hardware_addr(&mut self, value: &[u8]) {
        let (hardware_len, protocol_len) = (self.hardware_len(), self.protocol_len());
        let data = self.buffer.as_mut();
        data[field::THA(hardware_len, protocol_len)].copy_from_slice(value)
    }

    /// Set the target protocol address field.
    ///
    /// # Panics
    /// The function panics if `value` is not `self.protocol_len()` long.
    pub fn set_target_protocol_addr(&mut self, value: &[u8]) {
        let (hardware_len, protocol_len) = (self.hardware_len(), self.protocol_len());
        let data = self.buffer.as_mut();
        data[field::TPA(hardware_len, protocol_len)].copy_from_slice(value)
    }
}

impl<T: AsRef<[u8]>> AsRef<[u8]> for Packet<T> {
    fn as_ref(&self) -> &[u8] {
        self.buffer.as_ref()
    }
}

use crate::wire::{EthernetAddress, Ipv4Address};

/// A high-level representation of an Address Resolution Protocol packet.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[non_exhaustive]
pub enum Repr {
    /// An Ethernet and IPv4 Address Resolution Protocol packet.
    EthernetIpv4 {
        operation: Operation,
        source_hardware_addr: EthernetAddress,
        source_protocol_addr: Ipv4Address,
        target_hardware_addr: EthernetAddress,
        target_protocol_addr: Ipv4Address
    },
}

impl Repr {
    /// Parse an Address Resolution Protocol packet and return a high-level representation,
    /// or return `Err(Error::Unrecognized)` if the packet is not recognized.
    pub fn parse<T: AsRef<[u8]>>(packet: &Packet<T>) -> Result<Repr> {
        match (packet.hardware_type(), packet.protocol_type(),
               packet.hardware_len(), packet.protocol_len()) {
            (Hardware::Ethernet, Protocol::Ipv4, 6, 4) => {
                Ok(Repr::EthernetIpv4 {
                    operation: packet.operation(),
                    source_hardware_addr:
                        EthernetAddress::from_bytes(packet.source_hardware_addr()),
                    source_protocol_addr:
                        Ipv4Address::from_bytes(packet.source_protocol_addr()),
                    target_hardware_addr:
                        EthernetAddress::from_bytes(packet.target_hardware_addr()),
                    target_protocol_addr:
                        Ipv4Address::from_bytes(packet.target_protocol_addr())
                })
            },
            _ => Err(Error::Unrecognized)
        }
    }

    /// Return the length of a packet that will be emitted from this high-level representation.
    pub fn buffer_len(&self) -> usize {
        match *self {
            Repr::EthernetIpv4 { .. } => field::TPA(6, 4).end,
        }
    }

    /// Emit a high-level representation into an Address Resolution Protocol packet.
    pub fn emit<T: AsRef<[u8]> + AsMut<[u8]>>(&self, packet: &mut Packet<T>) {
        match *self {
            Repr::EthernetIpv4 {
                operation,
                source_hardware_addr, source_protocol_addr,
                target_hardware_addr, target_protocol_addr
            } => {
                packet.set_hardware_type(Hardware::Ethernet);
                packet.set_protocol_type(Protocol::Ipv4);
                packet.set_hardware_len(6);
                packet.set_protocol_len(4);
                packet.set_operation(operation);
                packet.set_source_hardware_addr(source_hardware_addr.as_bytes());
                packet.set_source_protocol_addr(source_protocol_addr.as_bytes());
                packet.set_target_hardware_addr(target_hardware_addr.as_bytes());
                packet.set_target_protocol_addr(target_protocol_addr.as_bytes());
            },
        }
    }
}

impl<T: AsRef<[u8]>> fmt::Display for Packet<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match Repr::parse(self) {
            Ok(repr) => write!(f, "{}", repr),
            _ => {
                write!(f, "ARP (unrecognized)")?;
                write!(f, " htype={:?} ptype={:?} hlen={:?} plen={:?} op={:?}",
                       self.hardware_type(), self.protocol_type(),
                       self.hardware_len(), self.protocol_len(),
                       self.operation())?;
                write!(f, " sha={:?} spa={:?} tha={:?} tpa={:?}",
                       self.source_hardware_addr(), self.source_protocol_addr(),
                       self.target_hardware_addr(), self.target_protocol_addr())?;
                Ok(())
            }
        }
    }
}

impl fmt::Display for Repr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Repr::EthernetIpv4 {
                operation,
                source_hardware_addr, source_protocol_addr,
                target_hardware_addr, target_protocol_addr
            } => {
                write!(f, "ARP type=Ethernet+IPv4 src={}/{} tgt={}/{} op={:?}",
                       source_hardware_addr, source_protocol_addr,
                       target_hardware_addr, target_protocol_addr,
                       operation)
            },
        }
    }
}

use crate::wire::pretty_print::{PrettyPrint, PrettyIndent};

impl<T: AsRef<[u8]>> PrettyPrint for Packet<T> {
    fn pretty_print(buffer: &dyn AsRef<[u8]>, f: &mut fmt::Formatter,
                    indent: &mut PrettyIndent) -> fmt::Result {
        match Packet::new_checked(buffer) {
            Err(err) => write!(f, "{}({})", indent, err),
            Ok(packet) => write!(f, "{}{}", indent, packet)
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    static PACKET_BYTES: [u8; 28] =
        [0x00, 0x01,
         0x08, 0x00,
         0x06,
         0x04,
         0x00, 0x01,
         0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
         0x21, 0x22, 0x23, 0x24,
         0x31, 0x32, 0x33, 0x34, 0x35, 0x36,
         0x41, 0x42, 0x43, 0x44];

    #[test]
    fn test_deconstruct() {
        let packet = Packet::new_unchecked(&PACKET_BYTES[..]);
        assert_eq!(packet.hardware_type(), Hardware::Ethernet);
        assert_eq!(packet.protocol_type(), Protocol::Ipv4);
        assert_eq!(packet.hardware_len(), 6);
        assert_eq!(packet.protocol_len(), 4);
        assert_eq!(packet.operation(), Operation::Request);
        assert_eq!(packet.source_hardware_addr(), &[0x11, 0x12, 0x13, 0x14, 0x15, 0x16]);
        assert_eq!(packet.source_protocol_addr(), &[0x21, 0x22, 0x23, 0x24]);
        assert_eq!(packet.target_hardware_addr(), &[0x31, 0x32, 0x33, 0x34, 0x35, 0x36]);
        assert_eq!(packet.target_protocol_addr(), &[0x41, 0x42, 0x43, 0x44]);
    }

    #[test]
    fn test_construct() {
        let mut bytes = vec![0xa5; 28];
        let mut packet = Packet::new_unchecked(&mut bytes);
        packet.set_hardware_type(Hardware::Ethernet);
        packet.set_protocol_type(Protocol::Ipv4);
        packet.set_hardware_len(6);
        packet.set_protocol_len(4);
        packet.set_operation(Operation::Request);
        packet.set_source_hardware_addr(&[0x11, 0x12, 0x13, 0x14, 0x15, 0x16]);
        packet.set_source_protocol_addr(&[0x21, 0x22, 0x23, 0x24]);
        packet.set_target_hardware_addr(&[0x31, 0x32, 0x33, 0x34, 0x35, 0x36]);
        packet.set_target_protocol_addr(&[0x41, 0x42, 0x43, 0x44]);
        assert_eq!(&packet.into_inner()[..], &PACKET_BYTES[..]);
    }

    fn packet_repr() -> Repr {
        Repr::EthernetIpv4 {
            operation: Operation::Request,
            source_hardware_addr:
                EthernetAddress::from_bytes(&[0x11, 0x12, 0x13, 0x14, 0x15, 0x16]),
            source_protocol_addr:
                Ipv4Address::from_bytes(&[0x21, 0x22, 0x23, 0x24]),
            target_hardware_addr:
                EthernetAddress::from_bytes(&[0x31, 0x32, 0x33, 0x34, 0x35, 0x36]),
            target_protocol_addr:
                Ipv4Address::from_bytes(&[0x41, 0x42, 0x43, 0x44])
        }
    }

    #[test]
    fn test_parse() {
        let packet = Packet::new_unchecked(&PACKET_BYTES[..]);
        let repr = Repr::parse(&packet).unwrap();
        assert_eq!(repr, packet_repr());
    }

    #[test]
    fn test_emit() {
        let mut bytes = vec![0xa5; 28];
        let mut packet = Packet::new_unchecked(&mut bytes);
        packet_repr().emit(&mut packet);
        assert_eq!(&packet.into_inner()[..], &PACKET_BYTES[..]);
    }
}