1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
//! The task system.
//!
//! A [`Task`] handle represents a spawned future that is run by the executor.

use std::fmt::Debug;
use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};

use crate::blocking::BlockingExecutor;
use crate::thread_local::ThreadLocalExecutor;
use crate::work_stealing::WorkStealingExecutor;

/// A runnable future, ready for execution.
///
/// When a future is internally spawned using `async_task::spawn()` or `async_task::spawn_local()`,
/// we get back two values:
///
/// 1. an `async_task::Task<()>`, which we refer to as a `Runnable`
/// 2. an `async_task::JoinHandle<T, ()>`, which is wrapped inside a `Task<T>`
///
/// Once a `Runnable` is run, it "vanishes" and only reappears when its future is woken. When it's
/// woken up, its schedule function is called, which means the `Runnable` gets pushed into a task
/// queue in an executor.
pub(crate) type Runnable = async_task::Task<()>;

/// A spawned future.
///
/// Tasks are also futures themselves and yield the output of the spawned future.
///
/// When a task is dropped, its gets canceled and won't be polled again. To cancel a task a bit
/// more gracefully and wait until it stops running, use the [`cancel()`][Task::cancel()] method.
///
/// Tasks that panic get immediately canceled. Awaiting a canceled task also causes a panic.
///
/// If the future panics, the panic will be unwound into the [`run()`] invocation that polled it.
/// However, this does not apply to the blocking executor - it will simply ignore panics and
/// continue running.
///
/// # Examples
///
/// ```
/// use smol::Task;
///
/// # smol::run(async {
/// // Spawn a task onto the work-stealing executor.
/// let task = Task::spawn(async {
///     println!("Hello from a task!");
///     1 + 2
/// });
///
/// // Wait for the task to complete.
/// assert_eq!(task.await, 3);
/// # });
/// ```
///
/// [`run()`]: crate::run()
#[must_use = "tasks get canceled when dropped, use `.detach()` to run them in the background"]
#[derive(Debug)]
pub struct Task<T>(pub(crate) Option<async_task::JoinHandle<T, ()>>);

impl<T: 'static> Task<T> {
    /// Spawns a future onto the thread-local executor.
    ///
    /// Panics if the current thread is not inside an invocation of [`run()`].
    ///
    /// # Examples
    ///
    /// ```
    /// use smol::Task;
    ///
    /// # smol::run(async {
    /// let task = Task::local(async { 1 + 2 });
    /// assert_eq!(task.await, 3);
    /// # })
    /// ```
    ///
    /// [`run()`]: crate::run()
    pub fn local(future: impl Future<Output = T> + 'static) -> Task<T> {
        ThreadLocalExecutor::spawn(future)
    }
}

impl<T: Send + 'static> Task<T> {
    /// Spawns a future onto the work-stealing executor.
    ///
    /// This future may be stolen and polled by any thread calling [`run()`].
    ///
    /// # Examples
    ///
    /// ```
    /// use smol::Task;
    ///
    /// # smol::run(async {
    /// let task = Task::spawn(async { 1 + 2 });
    /// assert_eq!(task.await, 3);
    /// # });
    /// ```
    ///
    /// [`run()`]: crate::run()
    pub fn spawn(future: impl Future<Output = T> + Send + 'static) -> Task<T> {
        WorkStealingExecutor::get().spawn(future)
    }

    /// Spawns a future onto the blocking executor.
    ///
    /// This future is allowed to block for an indefinite length of time.
    ///
    /// For convenience, there is also the [`blocking!`] macro that spawns a blocking tasks and
    /// immediately awaits it.
    ///
    /// # Examples
    ///
    /// Read a line from the standard input:
    ///
    /// ```no_run
    /// use smol::Task;
    /// use std::io::stdin;
    ///
    /// # smol::block_on(async {
    /// let line = Task::blocking(async {
    ///     let mut line = String::new();
    ///     std::io::stdin().read_line(&mut line).unwrap();
    ///     line
    /// })
    /// .await;
    /// # });
    /// ```
    ///
    /// See also examples for [`blocking!`], [`iter()`], [`reader()`], and [`writer()`].
    ///
    /// [`iter()`]: `crate::iter()`
    /// [`reader()`]: `crate::reader()`
    /// [`writer()`]: `crate::writer()`
    pub fn blocking(future: impl Future<Output = T> + Send + 'static) -> Task<T> {
        BlockingExecutor::get().spawn(future)
    }
}

impl<T, E> Task<Result<T, E>>
where
    T: Send + 'static,
    E: Debug + Send + 'static,
{
    /// Spawns a new task that awaits and unwraps the result.
    ///
    /// The new task will panic if the original task results in an error.
    ///
    /// # Examples
    ///
    /// ```
    /// use smol::{Async, Task};
    /// use std::net::TcpStream;
    ///
    /// # smol::run(async {
    /// let stream = Task::spawn(async {
    ///     Async::<TcpStream>::connect("example.com:80").await
    /// })
    /// .unwrap()
    /// .await;
    /// # })
    /// ```
    pub fn unwrap(self) -> Task<T> {
        Task::spawn(async { self.await.unwrap() })
    }

    /// Spawns a new task that awaits and unwraps the result.
    ///
    /// The new task will panic with the provided message if the original task results in an error.
    ///
    /// # Examples
    ///
    /// ```
    /// use smol::{Async, Task};
    /// use std::net::TcpStream;
    ///
    /// # smol::run(async {
    /// let stream = Task::spawn(async {
    ///     Async::<TcpStream>::connect("example.com:80").await
    /// })
    /// .expect("cannot connect")
    /// .await;
    /// # })
    /// ```
    pub fn expect(self, msg: &str) -> Task<T> {
        let msg = msg.to_owned();
        Task::spawn(async move { self.await.expect(&msg) })
    }
}

impl Task<()> {
    /// Detaches the task to let it keep running in the background.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use smol::{Task, Timer};
    /// use std::time::Duration;
    ///
    /// # smol::run(async {
    /// Task::spawn(async {
    ///     loop {
    ///         println!("I'm a daemon task looping forever.");
    ///         Timer::after(Duration::from_secs(1)).await;
    ///     }
    /// })
    /// .detach();
    /// # })
    /// ```
    pub fn detach(mut self) {
        self.0.take().unwrap();
    }
}

impl<T> Task<T> {
    /// Cancels the task and waits for it to stop running.
    ///
    /// Returns the task's output if it was completed just before it got canceled, or `None` if it
    /// didn't complete.
    ///
    /// While it's possible to simply drop the [`Task`] to cancel it, this is a cleaner way of
    /// canceling because it also waits for the task to stop running.
    ///
    /// # Examples
    ///
    /// ```
    /// use smol::{Task, Timer};
    /// use std::time::Duration;
    ///
    /// # smol::run(async {
    /// let task = Task::spawn(async {
    ///     loop {
    ///         println!("Even though I'm in an infinite loop, you can still cancel me!");
    ///         Timer::after(Duration::from_secs(1)).await;
    ///     }
    /// });
    ///
    /// Timer::after(Duration::from_secs(3)).await;
    /// task.cancel().await;
    /// # })
    /// ```
    pub async fn cancel(self) -> Option<T> {
        // There's a bug in rustdoc causing it to render `mut self` as `__arg0: Self`, so we just
        // do `{ self }` here to avoid marking `self` as mutable.
        let handle = { self }.0.take().unwrap();
        handle.cancel();
        handle.await
    }
}

impl<T> Drop for Task<T> {
    fn drop(&mut self) {
        if let Some(handle) = &self.0 {
            handle.cancel();
        }
    }
}

impl<T> Future for Task<T> {
    type Output = T;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        match Pin::new(&mut self.0.as_mut().unwrap()).poll(cx) {
            Poll::Pending => Poll::Pending,
            Poll::Ready(output) => Poll::Ready(output.expect("task has failed")),
        }
    }
}

impl<T> Into<async_task::JoinHandle<T, ()>> for Task<T> {
    fn into(mut self) -> async_task::JoinHandle<T, ()> {
        self.0
            .take()
            .expect("task was already canceled or has failed")
    }
}