use rand::distributions::Uniform;
use rand::prelude::*;
use rand_distr::Normal;
use crate::dataset::Dataset;
pub fn make_blobs(
num_samples: usize,
num_features: usize,
num_centers: usize,
) -> Dataset<f32, f32> {
let center_box = Uniform::from(-10.0..10.0);
let cluster_std = 1.0;
let mut centers: Vec<Vec<Normal<f32>>> = Vec::with_capacity(num_centers);
let mut rng = rand::thread_rng();
for _ in 0..num_centers {
centers.push(
(0..num_features)
.map(|_| Normal::new(center_box.sample(&mut rng), cluster_std).unwrap())
.collect(),
);
}
let mut y: Vec<f32> = Vec::with_capacity(num_samples);
let mut x: Vec<f32> = Vec::with_capacity(num_samples);
for i in 0..num_samples {
let label = i % num_centers;
y.push(label as f32);
for j in 0..num_features {
x.push(centers[label][j].sample(&mut rng));
}
}
Dataset {
data: x,
target: y,
num_samples,
num_features,
feature_names: (0..num_features).map(|n| n.to_string()).collect(),
target_names: vec!["label".to_string()],
description: "Isotropic Gaussian blobs".to_string(),
}
}
pub fn make_circles(num_samples: usize, factor: f32, noise: f32) -> Dataset<f32, u32> {
if !(0.0..1.0).contains(&factor) {
panic!("'factor' has to be between 0 and 1.");
}
let num_samples_out = num_samples / 2;
let num_samples_in = num_samples - num_samples_out;
let linspace_out = linspace(0.0, 2.0 * std::f32::consts::PI, num_samples_out);
let linspace_in = linspace(0.0, 2.0 * std::f32::consts::PI, num_samples_in);
let noise = Normal::new(0.0, noise).unwrap();
let mut rng = rand::thread_rng();
let mut x: Vec<f32> = Vec::with_capacity(num_samples * 2);
let mut y: Vec<f32> = Vec::with_capacity(num_samples);
for v in linspace_out {
x.push(v.cos() + noise.sample(&mut rng));
x.push(v.sin() + noise.sample(&mut rng));
y.push(0.0);
}
for v in linspace_in {
x.push(v.cos() * factor + noise.sample(&mut rng));
x.push(v.sin() * factor + noise.sample(&mut rng));
y.push(1.0);
}
Dataset {
data: x,
target: y.into_iter().map(|x| x as u32).collect(),
num_samples,
num_features: 2,
feature_names: (0..2).map(|n| n.to_string()).collect(),
target_names: vec!["label".to_string()],
description: "Large circle containing a smaller circle in 2d".to_string(),
}
}
pub fn make_moons(num_samples: usize, noise: f32) -> Dataset<f32, u32> {
let num_samples_out = num_samples / 2;
let num_samples_in = num_samples - num_samples_out;
let linspace_out = linspace(0.0, std::f32::consts::PI, num_samples_out);
let linspace_in = linspace(0.0, std::f32::consts::PI, num_samples_in);
let noise = Normal::new(0.0, noise).unwrap();
let mut rng = rand::thread_rng();
let mut x: Vec<f32> = Vec::with_capacity(num_samples * 2);
let mut y: Vec<f32> = Vec::with_capacity(num_samples);
for v in linspace_out {
x.push(v.cos() + noise.sample(&mut rng));
x.push(v.sin() + noise.sample(&mut rng));
y.push(0.0);
}
for v in linspace_in {
x.push(1.0 - v.cos() + noise.sample(&mut rng));
x.push(1.0 - v.sin() + noise.sample(&mut rng) - 0.5);
y.push(1.0);
}
Dataset {
data: x,
target: y.into_iter().map(|x| x as u32).collect(),
num_samples,
num_features: 2,
feature_names: (0..2).map(|n| n.to_string()).collect(),
target_names: vec!["label".to_string()],
description: "Two interleaving half circles in 2d".to_string(),
}
}
fn linspace(start: f32, stop: f32, num: usize) -> Vec<f32> {
let div = num as f32;
let delta = stop - start;
let step = delta / div;
(0..num).map(|v| v as f32 * step).collect()
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn test_make_blobs() {
let dataset = make_blobs(10, 2, 3);
assert_eq!(
dataset.data.len(),
dataset.num_features * dataset.num_samples
);
assert_eq!(dataset.target.len(), dataset.num_samples);
assert_eq!(dataset.num_features, 2);
assert_eq!(dataset.num_samples, 10);
}
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn test_make_circles() {
let dataset = make_circles(10, 0.5, 0.05);
assert_eq!(
dataset.data.len(),
dataset.num_features * dataset.num_samples
);
assert_eq!(dataset.target.len(), dataset.num_samples);
assert_eq!(dataset.num_features, 2);
assert_eq!(dataset.num_samples, 10);
}
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn test_make_moons() {
let dataset = make_moons(10, 0.05);
assert_eq!(
dataset.data.len(),
dataset.num_features * dataset.num_samples
);
assert_eq!(dataset.target.len(), dataset.num_samples);
assert_eq!(dataset.num_features, 2);
assert_eq!(dataset.num_samples, 10);
}
}