1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
//! # Ridge Regression
//!
//! [Linear regression](../linear_regression/index.html) is the standard algorithm for predicting a quantitative response \\(y\\) on the basis of a linear combination of explanatory variables \\(X\\)
//! that assumes that there is approximately a linear relationship between \\(X\\) and \\(y\\).
//! Ridge regression is an extension to linear regression that adds L2 regularization term to the loss function during training.
//! This term encourages simpler models that have smaller coefficient values.
//!
//! In ridge regression coefficients \\(\beta_0, \beta_0, ... \beta_n\\) are are estimated by solving
//!
//! \\[\hat{\beta} = (X^TX + \alpha I)^{-1}X^Ty \\]
//!
//! where \\(\alpha \geq 0\\) is a tuning parameter that controls strength of regularization. When \\(\alpha = 0\\) the penalty term has no effect, and ridge regression will produce the least squares estimates.
//! However, as \\(\alpha \rightarrow \infty\\), the impact of the shrinkage penalty grows, and the ridge regression coefficient estimates will approach zero.
//!
//! SmartCore uses [SVD](../../linalg/svd/index.html) and [Cholesky](../../linalg/cholesky/index.html) matrix decomposition to find estimates of \\(\hat{\beta}\\).
//! The Cholesky decomposition is more computationally efficient and more numerically stable than calculating the normal equation directly,
//! but does not work for all data matrices. Unlike the Cholesky decomposition, all matrices have an SVD decomposition.
//!
//! Example:
//!
//! ```
//! use smartcore::linalg::naive::dense_matrix::*;
//! use smartcore::linear::ridge_regression::*;
//!
//! // Longley dataset (https://www.statsmodels.org/stable/datasets/generated/longley.html)
//! let x = DenseMatrix::from_2d_array(&[
//!               &[234.289, 235.6, 159.0, 107.608, 1947., 60.323],
//!               &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
//!               &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
//!               &[284.599, 335.1, 165.0, 110.929, 1950., 61.187],
//!               &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
//!               &[346.999, 193.2, 359.4, 113.270, 1952., 63.639],
//!               &[365.385, 187.0, 354.7, 115.094, 1953., 64.989],
//!               &[363.112, 357.8, 335.0, 116.219, 1954., 63.761],
//!               &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
//!               &[419.180, 282.2, 285.7, 118.734, 1956., 67.857],
//!               &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
//!               &[444.546, 468.1, 263.7, 121.950, 1958., 66.513],
//!               &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
//!               &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
//!               &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
//!               &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
//!          ]);
//!
//! let y: Vec<f64> = vec![83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0,
//!           100.0, 101.2, 104.6, 108.4, 110.8, 112.6, 114.2, 115.7, 116.9];
//!
//! let y_hat = RidgeRegression::fit(&x, &y, RidgeRegressionParameters::default().with_alpha(0.1)).
//!                 and_then(|lr| lr.predict(&x)).unwrap();
//! ```
//!
//! ## References:
//!
//! * ["An Introduction to Statistical Learning", James G., Witten D., Hastie T., Tibshirani R., 6.2. Shrinkage Methods](http://faculty.marshall.usc.edu/gareth-james/ISL/)
//! * ["Numerical Recipes: The Art of Scientific Computing",  Press W.H., Teukolsky S.A., Vetterling W.T, Flannery B.P, 3rd ed., Section 15.4 General Linear Least Squares](http://numerical.recipes/)
//!
//! <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
//! <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
use std::fmt::Debug;

use serde::{Deserialize, Serialize};

use crate::api::{Predictor, SupervisedEstimator};
use crate::error::Failed;
use crate::linalg::BaseVector;
use crate::linalg::Matrix;
use crate::math::num::RealNumber;

#[derive(Serialize, Deserialize, Debug, Clone)]
/// Approach to use for estimation of regression coefficients. Cholesky is more efficient but SVD is more stable.
pub enum RidgeRegressionSolverName {
    /// Cholesky decomposition, see [Cholesky](../../linalg/cholesky/index.html)
    Cholesky,
    /// SVD decomposition, see [SVD](../../linalg/svd/index.html)
    SVD,
}

/// Ridge Regression parameters
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct RidgeRegressionParameters<T: RealNumber> {
    /// Solver to use for estimation of regression coefficients.
    pub solver: RidgeRegressionSolverName,
    /// Controls the strength of the penalty to the loss function.
    pub alpha: T,
    /// If true the regressors X will be normalized before regression
    /// by subtracting the mean and dividing by the standard deviation.
    pub normalize: bool,
}

/// Ridge regression
#[derive(Serialize, Deserialize, Debug)]
pub struct RidgeRegression<T: RealNumber, M: Matrix<T>> {
    coefficients: M,
    intercept: T,
    solver: RidgeRegressionSolverName,
}

impl<T: RealNumber> RidgeRegressionParameters<T> {
    /// Regularization parameter.
    pub fn with_alpha(mut self, alpha: T) -> Self {
        self.alpha = alpha;
        self
    }
    /// Solver to use for estimation of regression coefficients.
    pub fn with_solver(mut self, solver: RidgeRegressionSolverName) -> Self {
        self.solver = solver;
        self
    }
    /// If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the standard deviation.
    pub fn with_normalize(mut self, normalize: bool) -> Self {
        self.normalize = normalize;
        self
    }
}

impl<T: RealNumber> Default for RidgeRegressionParameters<T> {
    fn default() -> Self {
        RidgeRegressionParameters {
            solver: RidgeRegressionSolverName::Cholesky,
            alpha: T::one(),
            normalize: true,
        }
    }
}

impl<T: RealNumber, M: Matrix<T>> PartialEq for RidgeRegression<T, M> {
    fn eq(&self, other: &Self) -> bool {
        self.coefficients == other.coefficients
            && (self.intercept - other.intercept).abs() <= T::epsilon()
    }
}

impl<T: RealNumber, M: Matrix<T>> SupervisedEstimator<M, M::RowVector, RidgeRegressionParameters<T>>
    for RidgeRegression<T, M>
{
    fn fit(
        x: &M,
        y: &M::RowVector,
        parameters: RidgeRegressionParameters<T>,
    ) -> Result<Self, Failed> {
        RidgeRegression::fit(x, y, parameters)
    }
}

impl<T: RealNumber, M: Matrix<T>> Predictor<M, M::RowVector> for RidgeRegression<T, M> {
    fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
        self.predict(x)
    }
}

impl<T: RealNumber, M: Matrix<T>> RidgeRegression<T, M> {
    /// Fits ridge regression to your data.
    /// * `x` - _NxM_ matrix with _N_ observations and _M_ features in each observation.
    /// * `y` - target values
    /// * `parameters` - other parameters, use `Default::default()` to set parameters to default values.
    pub fn fit(
        x: &M,
        y: &M::RowVector,
        parameters: RidgeRegressionParameters<T>,
    ) -> Result<RidgeRegression<T, M>, Failed> {
        //w = inv(X^t X + alpha*Id) * X.T y

        let (n, p) = x.shape();

        if n <= p {
            return Err(Failed::fit(
                "Number of rows in X should be >= number of columns in X",
            ));
        }

        if y.len() != n {
            return Err(Failed::fit("Number of rows in X should = len(y)"));
        }

        let y_column = M::from_row_vector(y.clone()).transpose();

        let (w, b) = if parameters.normalize {
            let (scaled_x, col_mean, col_std) = Self::rescale_x(x)?;
            let x_t = scaled_x.transpose();
            let x_t_y = x_t.matmul(&y_column);
            let mut x_t_x = x_t.matmul(&scaled_x);

            for i in 0..p {
                x_t_x.add_element_mut(i, i, parameters.alpha);
            }

            let mut w = match parameters.solver {
                RidgeRegressionSolverName::Cholesky => x_t_x.cholesky_solve_mut(x_t_y)?,
                RidgeRegressionSolverName::SVD => x_t_x.svd_solve_mut(x_t_y)?,
            };

            for (i, col_std_i) in col_std.iter().enumerate().take(p) {
                w.set(i, 0, w.get(i, 0) / *col_std_i);
            }

            let mut b = T::zero();

            for (i, col_mean_i) in col_mean.iter().enumerate().take(p) {
                b += w.get(i, 0) * *col_mean_i;
            }

            let b = y.mean() - b;

            (w, b)
        } else {
            let x_t = x.transpose();
            let x_t_y = x_t.matmul(&y_column);
            let mut x_t_x = x_t.matmul(x);

            for i in 0..p {
                x_t_x.add_element_mut(i, i, parameters.alpha);
            }

            let w = match parameters.solver {
                RidgeRegressionSolverName::Cholesky => x_t_x.cholesky_solve_mut(x_t_y)?,
                RidgeRegressionSolverName::SVD => x_t_x.svd_solve_mut(x_t_y)?,
            };

            (w, T::zero())
        };

        Ok(RidgeRegression {
            intercept: b,
            coefficients: w,
            solver: parameters.solver,
        })
    }

    fn rescale_x(x: &M) -> Result<(M, Vec<T>, Vec<T>), Failed> {
        let col_mean = x.mean(0);
        let col_std = x.std(0);

        for (i, col_std_i) in col_std.iter().enumerate() {
            if (*col_std_i - T::zero()).abs() < T::epsilon() {
                return Err(Failed::fit(&format!(
                    "Cannot rescale constant column {}",
                    i
                )));
            }
        }

        let mut scaled_x = x.clone();
        scaled_x.scale_mut(&col_mean, &col_std, 0);
        Ok((scaled_x, col_mean, col_std))
    }

    /// Predict target values from `x`
    /// * `x` - _KxM_ data where _K_ is number of observations and _M_ is number of features.
    pub fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
        let (nrows, _) = x.shape();
        let mut y_hat = x.matmul(&self.coefficients);
        y_hat.add_mut(&M::fill(nrows, 1, self.intercept));
        Ok(y_hat.transpose().to_row_vector())
    }

    /// Get estimates regression coefficients
    pub fn coefficients(&self) -> &M {
        &self.coefficients
    }

    /// Get estimate of intercept
    pub fn intercept(&self) -> T {
        self.intercept
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::linalg::naive::dense_matrix::*;
    use crate::metrics::mean_absolute_error;

    #[test]
    fn ridge_fit_predict() {
        let x = DenseMatrix::from_2d_array(&[
            &[234.289, 235.6, 159.0, 107.608, 1947., 60.323],
            &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
            &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
            &[284.599, 335.1, 165.0, 110.929, 1950., 61.187],
            &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
            &[346.999, 193.2, 359.4, 113.270, 1952., 63.639],
            &[365.385, 187.0, 354.7, 115.094, 1953., 64.989],
            &[363.112, 357.8, 335.0, 116.219, 1954., 63.761],
            &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
            &[419.180, 282.2, 285.7, 118.734, 1956., 67.857],
            &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
            &[444.546, 468.1, 263.7, 121.950, 1958., 66.513],
            &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
            &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
            &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
            &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
        ]);

        let y: Vec<f64> = vec![
            83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
            114.2, 115.7, 116.9,
        ];

        let y_hat_cholesky = RidgeRegression::fit(
            &x,
            &y,
            RidgeRegressionParameters {
                solver: RidgeRegressionSolverName::Cholesky,
                alpha: 0.1,
                normalize: true,
            },
        )
        .and_then(|lr| lr.predict(&x))
        .unwrap();

        assert!(mean_absolute_error(&y_hat_cholesky, &y) < 2.0);

        let y_hat_svd = RidgeRegression::fit(
            &x,
            &y,
            RidgeRegressionParameters {
                solver: RidgeRegressionSolverName::SVD,
                alpha: 0.1,
                normalize: false,
            },
        )
        .and_then(|lr| lr.predict(&x))
        .unwrap();

        assert!(mean_absolute_error(&y_hat_svd, &y) < 2.0);
    }

    #[test]
    fn serde() {
        let x = DenseMatrix::from_2d_array(&[
            &[234.289, 235.6, 159.0, 107.608, 1947., 60.323],
            &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
            &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
            &[284.599, 335.1, 165.0, 110.929, 1950., 61.187],
            &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
            &[346.999, 193.2, 359.4, 113.270, 1952., 63.639],
            &[365.385, 187.0, 354.7, 115.094, 1953., 64.989],
            &[363.112, 357.8, 335.0, 116.219, 1954., 63.761],
            &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
            &[419.180, 282.2, 285.7, 118.734, 1956., 67.857],
            &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
            &[444.546, 468.1, 263.7, 121.950, 1958., 66.513],
            &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
            &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
            &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
            &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
        ]);

        let y = vec![
            83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
            114.2, 115.7, 116.9,
        ];

        let lr = RidgeRegression::fit(&x, &y, Default::default()).unwrap();

        let deserialized_lr: RidgeRegression<f64, DenseMatrix<f64>> =
            serde_json::from_str(&serde_json::to_string(&lr).unwrap()).unwrap();

        assert_eq!(lr, deserialized_lr);
    }
}