1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
//! # Lasso
//!
//! [Linear regression](../linear_regression/index.html) is the standard algorithm for predicting a quantitative response \\(y\\) on the basis of a linear combination of explanatory variables \\(X\\)
//! that assumes that there is approximately a linear relationship between \\(X\\) and \\(y\\).
//! Lasso is an extension to linear regression that adds L1 regularization term to the loss function during training.
//!
//! Similar to [ridge regression](../ridge_regression/index.html), the lasso shrinks the coefficient estimates towards zero when. However, in the case of the lasso, the l1 penalty has the effect of
//! forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter \\(\alpha\\) is sufficiently large.
//!
//! Lasso coefficient estimates solve the problem:
//!
//! \\[\underset{\beta}{minimize} \space \space \sum_{i=1}^n \left( y_i - \beta_0 - \sum_{j=1}^p \beta_jx_{ij} \right)^2 + \alpha \sum_{j=1}^p \lVert \beta_j \rVert_1\\]
//!
//! This problem is solved with an interior-point method that is comparable to coordinate descent in solving large problems with modest accuracy,
//! but is able to solve them with high accuracy with relatively small additional computational cost.
//!
//! ## References:
//!
//! * ["An Introduction to Statistical Learning", James G., Witten D., Hastie T., Tibshirani R., 6.2. Shrinkage Methods](http://faculty.marshall.usc.edu/gareth-james/ISL/)
//! * ["An Interior-Point Method for Large-Scale l1-Regularized Least Squares",  K. Koh, M. Lustig, S. Boyd, D. Gorinevsky](https://web.stanford.edu/~boyd/papers/pdf/l1_ls.pdf)
//! * [Simple Matlab Solver for l1-regularized Least Squares Problems](https://web.stanford.edu/~boyd/l1_ls/)
//!
//! <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
//! <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
use std::fmt::Debug;

use serde::{Deserialize, Serialize};

use crate::api::{Predictor, SupervisedEstimator};
use crate::error::Failed;
use crate::linalg::BaseVector;
use crate::linalg::Matrix;
use crate::linear::lasso_optimizer::InteriorPointOptimizer;
use crate::math::num::RealNumber;

/// Lasso regression parameters
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct LassoParameters<T: RealNumber> {
    /// Controls the strength of the penalty to the loss function.
    pub alpha: T,
    /// If true the regressors X will be normalized before regression
    /// by subtracting the mean and dividing by the standard deviation.
    pub normalize: bool,
    /// The tolerance for the optimization
    pub tol: T,
    /// The maximum number of iterations
    pub max_iter: usize,
}

#[derive(Serialize, Deserialize, Debug)]
/// Lasso regressor
pub struct Lasso<T: RealNumber, M: Matrix<T>> {
    coefficients: M,
    intercept: T,
}

impl<T: RealNumber> LassoParameters<T> {
    /// Regularization parameter.
    pub fn with_alpha(mut self, alpha: T) -> Self {
        self.alpha = alpha;
        self
    }
    /// If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the standard deviation.
    pub fn with_normalize(mut self, normalize: bool) -> Self {
        self.normalize = normalize;
        self
    }
    /// The tolerance for the optimization
    pub fn with_tol(mut self, tol: T) -> Self {
        self.tol = tol;
        self
    }
    /// The maximum number of iterations
    pub fn with_max_iter(mut self, max_iter: usize) -> Self {
        self.max_iter = max_iter;
        self
    }
}

impl<T: RealNumber> Default for LassoParameters<T> {
    fn default() -> Self {
        LassoParameters {
            alpha: T::one(),
            normalize: true,
            tol: T::from_f64(1e-4).unwrap(),
            max_iter: 1000,
        }
    }
}

impl<T: RealNumber, M: Matrix<T>> PartialEq for Lasso<T, M> {
    fn eq(&self, other: &Self) -> bool {
        self.coefficients == other.coefficients
            && (self.intercept - other.intercept).abs() <= T::epsilon()
    }
}

impl<T: RealNumber, M: Matrix<T>> SupervisedEstimator<M, M::RowVector, LassoParameters<T>>
    for Lasso<T, M>
{
    fn fit(x: &M, y: &M::RowVector, parameters: LassoParameters<T>) -> Result<Self, Failed> {
        Lasso::fit(x, y, parameters)
    }
}

impl<T: RealNumber, M: Matrix<T>> Predictor<M, M::RowVector> for Lasso<T, M> {
    fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
        self.predict(x)
    }
}

impl<T: RealNumber, M: Matrix<T>> Lasso<T, M> {
    /// Fits Lasso regression to your data.
    /// * `x` - _NxM_ matrix with _N_ observations and _M_ features in each observation.
    /// * `y` - target values
    /// * `parameters` - other parameters, use `Default::default()` to set parameters to default values.
    pub fn fit(
        x: &M,
        y: &M::RowVector,
        parameters: LassoParameters<T>,
    ) -> Result<Lasso<T, M>, Failed> {
        let (n, p) = x.shape();

        if n <= p {
            return Err(Failed::fit(
                "Number of rows in X should be >= number of columns in X",
            ));
        }

        if parameters.alpha < T::zero() {
            return Err(Failed::fit("alpha should be >= 0"));
        }

        if parameters.tol <= T::zero() {
            return Err(Failed::fit("tol should be > 0"));
        }

        if parameters.max_iter == 0 {
            return Err(Failed::fit("max_iter should be > 0"));
        }

        if y.len() != n {
            return Err(Failed::fit("Number of rows in X should = len(y)"));
        }

        let l1_reg = parameters.alpha * T::from_usize(n).unwrap();

        let (w, b) = if parameters.normalize {
            let (scaled_x, col_mean, col_std) = Self::rescale_x(x)?;

            let mut optimizer = InteriorPointOptimizer::new(&scaled_x, p);

            let mut w =
                optimizer.optimize(&scaled_x, y, l1_reg, parameters.max_iter, parameters.tol)?;

            for (j, col_std_j) in col_std.iter().enumerate().take(p) {
                w.set(j, 0, w.get(j, 0) / *col_std_j);
            }

            let mut b = T::zero();

            for (i, col_mean_i) in col_mean.iter().enumerate().take(p) {
                b += w.get(i, 0) * *col_mean_i;
            }

            b = y.mean() - b;
            (w, b)
        } else {
            let mut optimizer = InteriorPointOptimizer::new(x, p);

            let w = optimizer.optimize(x, y, l1_reg, parameters.max_iter, parameters.tol)?;

            (w, y.mean())
        };

        Ok(Lasso {
            intercept: b,
            coefficients: w,
        })
    }

    /// Predict target values from `x`
    /// * `x` - _KxM_ data where _K_ is number of observations and _M_ is number of features.
    pub fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
        let (nrows, _) = x.shape();
        let mut y_hat = x.matmul(&self.coefficients);
        y_hat.add_mut(&M::fill(nrows, 1, self.intercept));
        Ok(y_hat.transpose().to_row_vector())
    }

    /// Get estimates regression coefficients
    pub fn coefficients(&self) -> &M {
        &self.coefficients
    }

    /// Get estimate of intercept
    pub fn intercept(&self) -> T {
        self.intercept
    }

    fn rescale_x(x: &M) -> Result<(M, Vec<T>, Vec<T>), Failed> {
        let col_mean = x.mean(0);
        let col_std = x.std(0);

        for (i, col_std_i) in col_std.iter().enumerate() {
            if (*col_std_i - T::zero()).abs() < T::epsilon() {
                return Err(Failed::fit(&format!(
                    "Cannot rescale constant column {}",
                    i
                )));
            }
        }

        let mut scaled_x = x.clone();
        scaled_x.scale_mut(&col_mean, &col_std, 0);
        Ok((scaled_x, col_mean, col_std))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::linalg::naive::dense_matrix::*;
    use crate::metrics::mean_absolute_error;

    #[test]
    fn lasso_fit_predict() {
        let x = DenseMatrix::from_2d_array(&[
            &[234.289, 235.6, 159.0, 107.608, 1947., 60.323],
            &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
            &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
            &[284.599, 335.1, 165.0, 110.929, 1950., 61.187],
            &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
            &[346.999, 193.2, 359.4, 113.270, 1952., 63.639],
            &[365.385, 187.0, 354.7, 115.094, 1953., 64.989],
            &[363.112, 357.8, 335.0, 116.219, 1954., 63.761],
            &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
            &[419.180, 282.2, 285.7, 118.734, 1956., 67.857],
            &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
            &[444.546, 468.1, 263.7, 121.950, 1958., 66.513],
            &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
            &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
            &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
            &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
        ]);

        let y: Vec<f64> = vec![
            83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
            114.2, 115.7, 116.9,
        ];

        let y_hat = Lasso::fit(&x, &y, Default::default())
            .and_then(|lr| lr.predict(&x))
            .unwrap();

        assert!(mean_absolute_error(&y_hat, &y) < 2.0);

        let y_hat = Lasso::fit(
            &x,
            &y,
            LassoParameters {
                alpha: 0.1,
                normalize: false,
                tol: 1e-4,
                max_iter: 1000,
            },
        )
        .and_then(|lr| lr.predict(&x))
        .unwrap();

        assert!(mean_absolute_error(&y_hat, &y) < 2.0);
    }

    #[test]
    fn serde() {
        let x = DenseMatrix::from_2d_array(&[
            &[234.289, 235.6, 159.0, 107.608, 1947., 60.323],
            &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
            &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
            &[284.599, 335.1, 165.0, 110.929, 1950., 61.187],
            &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
            &[346.999, 193.2, 359.4, 113.270, 1952., 63.639],
            &[365.385, 187.0, 354.7, 115.094, 1953., 64.989],
            &[363.112, 357.8, 335.0, 116.219, 1954., 63.761],
            &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
            &[419.180, 282.2, 285.7, 118.734, 1956., 67.857],
            &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
            &[444.546, 468.1, 263.7, 121.950, 1958., 66.513],
            &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
            &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
            &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
            &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
        ]);

        let y = vec![
            83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
            114.2, 115.7, 116.9,
        ];

        let lr = Lasso::fit(&x, &y, Default::default()).unwrap();

        let deserialized_lr: Lasso<f64, DenseMatrix<f64>> =
            serde_json::from_str(&serde_json::to_string(&lr).unwrap()).unwrap();

        assert_eq!(lr, deserialized_lr);
    }
}