1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
//! # Random Forest Classifier
//! A random forest is an ensemble estimator that fits multiple [decision trees](../../tree/index.html) to random subsets of the dataset and averages predictions
//! to improve the predictive accuracy and control over-fitting. See [ensemble models](../index.html) for more details.
//!
//! Bigger number of estimators in general improves performance of the algorithm with an increased cost of training time.
//! The random sample of _m_ predictors is typically set to be \\(\sqrt{p}\\) from the full set of _p_ predictors.
//!
//! Example:
//!
//! ```
//! use smartcore::linalg::naive::dense_matrix::*;
//! use smartcore::ensemble::random_forest_classifier::RandomForestClassifier;
//!
//! // Iris dataset
//! let x = DenseMatrix::from_2d_array(&[
//!              &[5.1, 3.5, 1.4, 0.2],
//!              &[4.9, 3.0, 1.4, 0.2],
//!              &[4.7, 3.2, 1.3, 0.2],
//!              &[4.6, 3.1, 1.5, 0.2],
//!              &[5.0, 3.6, 1.4, 0.2],
//!              &[5.4, 3.9, 1.7, 0.4],
//!              &[4.6, 3.4, 1.4, 0.3],
//!              &[5.0, 3.4, 1.5, 0.2],
//!              &[4.4, 2.9, 1.4, 0.2],
//!              &[4.9, 3.1, 1.5, 0.1],
//!              &[7.0, 3.2, 4.7, 1.4],
//!              &[6.4, 3.2, 4.5, 1.5],
//!              &[6.9, 3.1, 4.9, 1.5],
//!              &[5.5, 2.3, 4.0, 1.3],
//!              &[6.5, 2.8, 4.6, 1.5],
//!              &[5.7, 2.8, 4.5, 1.3],
//!              &[6.3, 3.3, 4.7, 1.6],
//!              &[4.9, 2.4, 3.3, 1.0],
//!              &[6.6, 2.9, 4.6, 1.3],
//!              &[5.2, 2.7, 3.9, 1.4],
//!         ]);
//! let y = vec![
//!              0., 0., 0., 0., 0., 0., 0., 0.,
//!              1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
//!         ];
//!
//! let classifier = RandomForestClassifier::fit(&x, &y, Default::default()).unwrap();
//! let y_hat = classifier.predict(&x).unwrap(); // use the same data for prediction
//! ```
//!
//! <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
//! <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
use std::default::Default;
use std::fmt::Debug;

use rand::Rng;
use serde::{Deserialize, Serialize};

use crate::api::{Predictor, SupervisedEstimator};
use crate::error::Failed;
use crate::linalg::Matrix;
use crate::math::num::RealNumber;
use crate::tree::decision_tree_classifier::{
    which_max, DecisionTreeClassifier, DecisionTreeClassifierParameters, SplitCriterion,
};

/// Parameters of the Random Forest algorithm.
/// Some parameters here are passed directly into base estimator.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct RandomForestClassifierParameters {
    /// Split criteria to use when building a tree. See [Decision Tree Classifier](../../tree/decision_tree_classifier/index.html)
    pub criterion: SplitCriterion,
    /// Tree max depth. See [Decision Tree Classifier](../../tree/decision_tree_classifier/index.html)
    pub max_depth: Option<u16>,
    /// The minimum number of samples required to be at a leaf node. See [Decision Tree Classifier](../../tree/decision_tree_classifier/index.html)
    pub min_samples_leaf: usize,
    /// The minimum number of samples required to split an internal node. See [Decision Tree Classifier](../../tree/decision_tree_classifier/index.html)
    pub min_samples_split: usize,
    /// The number of trees in the forest.
    pub n_trees: u16,
    /// Number of random sample of predictors to use as split candidates.
    pub m: Option<usize>,
}

/// Random Forest Classifier
#[derive(Serialize, Deserialize, Debug)]
pub struct RandomForestClassifier<T: RealNumber> {
    parameters: RandomForestClassifierParameters,
    trees: Vec<DecisionTreeClassifier<T>>,
    classes: Vec<T>,
}

impl RandomForestClassifierParameters {
    /// Split criteria to use when building a tree. See [Decision Tree Classifier](../../tree/decision_tree_classifier/index.html)
    pub fn with_criterion(mut self, criterion: SplitCriterion) -> Self {
        self.criterion = criterion;
        self
    }
    /// Tree max depth. See [Decision Tree Classifier](../../tree/decision_tree_classifier/index.html)
    pub fn with_max_depth(mut self, max_depth: u16) -> Self {
        self.max_depth = Some(max_depth);
        self
    }
    /// The minimum number of samples required to be at a leaf node. See [Decision Tree Classifier](../../tree/decision_tree_classifier/index.html)
    pub fn with_min_samples_leaf(mut self, min_samples_leaf: usize) -> Self {
        self.min_samples_leaf = min_samples_leaf;
        self
    }
    /// The minimum number of samples required to split an internal node. See [Decision Tree Classifier](../../tree/decision_tree_classifier/index.html)
    pub fn with_min_samples_split(mut self, min_samples_split: usize) -> Self {
        self.min_samples_split = min_samples_split;
        self
    }
    /// The number of trees in the forest.
    pub fn with_n_trees(mut self, n_trees: u16) -> Self {
        self.n_trees = n_trees;
        self
    }
    /// Number of random sample of predictors to use as split candidates.
    pub fn with_m(mut self, m: usize) -> Self {
        self.m = Some(m);
        self
    }
}

impl<T: RealNumber> PartialEq for RandomForestClassifier<T> {
    fn eq(&self, other: &Self) -> bool {
        if self.classes.len() != other.classes.len() || self.trees.len() != other.trees.len() {
            false
        } else {
            for i in 0..self.classes.len() {
                if (self.classes[i] - other.classes[i]).abs() > T::epsilon() {
                    return false;
                }
            }
            for i in 0..self.trees.len() {
                if self.trees[i] != other.trees[i] {
                    return false;
                }
            }
            true
        }
    }
}

impl Default for RandomForestClassifierParameters {
    fn default() -> Self {
        RandomForestClassifierParameters {
            criterion: SplitCriterion::Gini,
            max_depth: None,
            min_samples_leaf: 1,
            min_samples_split: 2,
            n_trees: 100,
            m: Option::None,
        }
    }
}

impl<T: RealNumber, M: Matrix<T>>
    SupervisedEstimator<M, M::RowVector, RandomForestClassifierParameters>
    for RandomForestClassifier<T>
{
    fn fit(
        x: &M,
        y: &M::RowVector,
        parameters: RandomForestClassifierParameters,
    ) -> Result<Self, Failed> {
        RandomForestClassifier::fit(x, y, parameters)
    }
}

impl<T: RealNumber, M: Matrix<T>> Predictor<M, M::RowVector> for RandomForestClassifier<T> {
    fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
        self.predict(x)
    }
}

impl<T: RealNumber> RandomForestClassifier<T> {
    /// Build a forest of trees from the training set.
    /// * `x` - _NxM_ matrix with _N_ observations and _M_ features in each observation.
    /// * `y` - the target class values
    pub fn fit<M: Matrix<T>>(
        x: &M,
        y: &M::RowVector,
        parameters: RandomForestClassifierParameters,
    ) -> Result<RandomForestClassifier<T>, Failed> {
        let (_, num_attributes) = x.shape();
        let y_m = M::from_row_vector(y.clone());
        let (_, y_ncols) = y_m.shape();
        let mut yi: Vec<usize> = vec![0; y_ncols];
        let classes = y_m.unique();

        for (i, yi_i) in yi.iter_mut().enumerate().take(y_ncols) {
            let yc = y_m.get(0, i);
            *yi_i = classes.iter().position(|c| yc == *c).unwrap();
        }

        let mtry = parameters.m.unwrap_or_else(|| {
            (T::from(num_attributes).unwrap())
                .sqrt()
                .floor()
                .to_usize()
                .unwrap()
        });

        let classes = y_m.unique();
        let k = classes.len();
        let mut trees: Vec<DecisionTreeClassifier<T>> = Vec::new();

        for _ in 0..parameters.n_trees {
            let samples = RandomForestClassifier::<T>::sample_with_replacement(&yi, k);
            let params = DecisionTreeClassifierParameters {
                criterion: parameters.criterion.clone(),
                max_depth: parameters.max_depth,
                min_samples_leaf: parameters.min_samples_leaf,
                min_samples_split: parameters.min_samples_split,
            };
            let tree = DecisionTreeClassifier::fit_weak_learner(x, y, samples, mtry, params)?;
            trees.push(tree);
        }

        Ok(RandomForestClassifier {
            parameters,
            trees,
            classes,
        })
    }

    /// Predict class for `x`
    /// * `x` - _KxM_ data where _K_ is number of observations and _M_ is number of features.
    pub fn predict<M: Matrix<T>>(&self, x: &M) -> Result<M::RowVector, Failed> {
        let mut result = M::zeros(1, x.shape().0);

        let (n, _) = x.shape();

        for i in 0..n {
            result.set(0, i, self.classes[self.predict_for_row(x, i)]);
        }

        Ok(result.to_row_vector())
    }

    fn predict_for_row<M: Matrix<T>>(&self, x: &M, row: usize) -> usize {
        let mut result = vec![0; self.classes.len()];

        for tree in self.trees.iter() {
            result[tree.predict_for_row(x, row)] += 1;
        }

        which_max(&result)
    }

    fn sample_with_replacement(y: &[usize], num_classes: usize) -> Vec<usize> {
        let mut rng = rand::thread_rng();
        let class_weight = vec![1.; num_classes];
        let nrows = y.len();
        let mut samples = vec![0; nrows];
        for (l, class_weight_l) in class_weight.iter().enumerate().take(num_classes) {
            let mut n_samples = 0;
            let mut index: Vec<usize> = Vec::new();
            for (i, y_i) in y.iter().enumerate().take(nrows) {
                if *y_i == l {
                    index.push(i);
                    n_samples += 1;
                }
            }

            let size = ((n_samples as f64) / *class_weight_l) as usize;
            for _ in 0..size {
                let xi: usize = rng.gen_range(0, n_samples);
                samples[index[xi]] += 1;
            }
        }
        samples
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::linalg::naive::dense_matrix::DenseMatrix;
    use crate::metrics::*;

    #[test]
    fn fit_predict_iris() {
        let x = DenseMatrix::from_2d_array(&[
            &[5.1, 3.5, 1.4, 0.2],
            &[4.9, 3.0, 1.4, 0.2],
            &[4.7, 3.2, 1.3, 0.2],
            &[4.6, 3.1, 1.5, 0.2],
            &[5.0, 3.6, 1.4, 0.2],
            &[5.4, 3.9, 1.7, 0.4],
            &[4.6, 3.4, 1.4, 0.3],
            &[5.0, 3.4, 1.5, 0.2],
            &[4.4, 2.9, 1.4, 0.2],
            &[4.9, 3.1, 1.5, 0.1],
            &[7.0, 3.2, 4.7, 1.4],
            &[6.4, 3.2, 4.5, 1.5],
            &[6.9, 3.1, 4.9, 1.5],
            &[5.5, 2.3, 4.0, 1.3],
            &[6.5, 2.8, 4.6, 1.5],
            &[5.7, 2.8, 4.5, 1.3],
            &[6.3, 3.3, 4.7, 1.6],
            &[4.9, 2.4, 3.3, 1.0],
            &[6.6, 2.9, 4.6, 1.3],
            &[5.2, 2.7, 3.9, 1.4],
        ]);
        let y = vec![
            0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        ];

        let classifier = RandomForestClassifier::fit(
            &x,
            &y,
            RandomForestClassifierParameters {
                criterion: SplitCriterion::Gini,
                max_depth: None,
                min_samples_leaf: 1,
                min_samples_split: 2,
                n_trees: 100,
                m: Option::None,
            },
        )
        .unwrap();

        assert!(accuracy(&y, &classifier.predict(&x).unwrap()) >= 0.95);
    }

    #[test]
    fn serde() {
        let x = DenseMatrix::from_2d_array(&[
            &[5.1, 3.5, 1.4, 0.2],
            &[4.9, 3.0, 1.4, 0.2],
            &[4.7, 3.2, 1.3, 0.2],
            &[4.6, 3.1, 1.5, 0.2],
            &[5.0, 3.6, 1.4, 0.2],
            &[5.4, 3.9, 1.7, 0.4],
            &[4.6, 3.4, 1.4, 0.3],
            &[5.0, 3.4, 1.5, 0.2],
            &[4.4, 2.9, 1.4, 0.2],
            &[4.9, 3.1, 1.5, 0.1],
            &[7.0, 3.2, 4.7, 1.4],
            &[6.4, 3.2, 4.5, 1.5],
            &[6.9, 3.1, 4.9, 1.5],
            &[5.5, 2.3, 4.0, 1.3],
            &[6.5, 2.8, 4.6, 1.5],
            &[5.7, 2.8, 4.5, 1.3],
            &[6.3, 3.3, 4.7, 1.6],
            &[4.9, 2.4, 3.3, 1.0],
            &[6.6, 2.9, 4.6, 1.3],
            &[5.2, 2.7, 3.9, 1.4],
        ]);
        let y = vec![
            0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        ];

        let forest = RandomForestClassifier::fit(&x, &y, Default::default()).unwrap();

        let deserialized_forest: RandomForestClassifier<f64> =
            bincode::deserialize(&bincode::serialize(&forest).unwrap()).unwrap();

        assert_eq!(forest, deserialized_forest);
    }
}