1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
use crate::num::traits::{One, Zero};
use crate::*;

/// Number trait used in this library.
pub trait Number:
    Clone
    + Send
    + Sync
    + One
    + Zero
    + std::str::FromStr
    + std::ops::Neg<Output = Self>
    + std::ops::Add<Output = Self>
    + std::ops::Sub<Output = Self>
    + std::ops::Mul<Output = Self>
    + std::ops::Div<Output = Self>
    + std::ops::AddAssign
    + std::ops::SubAssign
    + std::ops::MulAssign
    + std::ops::DivAssign
    + std::cmp::PartialOrd
    + std::fmt::Debug
    + std::fmt::Display
{
    /// Returns greatest integer less than or equal to.
    fn floor(&self) -> Self;
    /// Returns least integer greater than or equal to.
    fn ceil(&self) -> Self;
    /// Checks if it is an integer.
    fn is_integer(&self) -> bool;
}

impl Number for f32 {
    fn floor(&self) -> Self {
        f32::floor(*self)
    }
    fn ceil(&self) -> Self {
        f32::ceil(*self)
    }
    fn is_integer(&self) -> bool {
        self.fract().abs() <= std::f32::EPSILON
    }
}

impl Number for f64 {
    fn floor(&self) -> Self {
        f64::floor(*self)
    }
    fn ceil(&self) -> Self {
        f64::ceil(*self)
    }
    fn is_integer(&self) -> bool {
        self.fract().abs() <= std::f64::EPSILON
    }
}

impl Number for Rational32 {
    fn floor(&self) -> Self {
        Rational32::floor(self)
    }
    fn ceil(&self) -> Self {
        Rational32::ceil(self)
    }
    fn is_integer(&self) -> bool {
        Rational32::is_integer(self)
    }
}

impl Number for Rational64 {
    fn floor(&self) -> Self {
        Rational64::floor(self)
    }
    fn ceil(&self) -> Self {
        Rational64::ceil(self)
    }
    fn is_integer(&self) -> bool {
        Rational64::is_integer(self)
    }
}

impl Number for Rational {
    fn floor(&self) -> Self {
        Rational::floor(self)
    }
    fn ceil(&self) -> Self {
        Rational::ceil(self)
    }
    fn is_integer(&self) -> bool {
        Rational::is_integer(self)
    }
}

impl Number for Ratio<BigInt> {
    fn floor(&self) -> Self {
        Self::floor(self)
    }
    fn ceil(&self) -> Self {
        Self::ceil(self)
    }
    fn is_integer(&self) -> bool {
        Self::is_integer(self)
    }
}

/// Solution to an LP instance as returned by
/// the solve method of an LP instance.
#[derive(Debug, PartialEq)]
pub enum Solution<T> {
    /// Represents that LP is infeasible.
    Infeasible,
    /// Represents that LP is unbounded.
    Unbounded,
    /// The first value is the optimal value of the objective and
    /// the second value is the assignment.
    Optimal(T, Vec<T>),
}

/// Solver settings that can be passed to the solver instance.
pub enum SolverSettings {
    /// Enables data parallelism while solving.
    EnableDataParallelism,
}

pub(crate) struct SolverOptions {
    pub parallel: bool,
}