1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
/*! This crate provides the type [`SlabMap`].
[`SlabMap`] is HashMap-like collection that automatically determines the key.

# Examples

```
use slabmap::SlabMap;

let mut s = SlabMap::new();
let key_a = s.insert("aaa");
let key_b = s.insert("bbb");

assert_eq!(s[key_a], "aaa");
assert_eq!(s[key_b], "bbb");

for (key, value) in &s {
    println!("{} -> {}", key, value);
}

assert_eq!(s.remove(key_a), Some("aaa"));
assert_eq!(s.remove(key_a), None);
```
*/

use std::{fmt::Debug, iter::FusedIterator, mem::replace};
/**
A fast HashMap-like collection that automatically determines the key.
*/
#[derive(Clone)]
pub struct SlabMap<T> {
    entries: Vec<Entry<T>>,
    next_vacant_idx: usize,
    len: usize,
    non_optimized: usize,
}
const INVALID_INDEX: usize = usize::MAX;

#[derive(Clone)]
enum Entry<T> {
    Occupied(T),
    VacantHead { vacant_body_len: usize },
    VacantTail { next_vacant_idx: usize },
}

impl<T> SlabMap<T> {
    /// Constructs a new, empty SlabMap<T>.
    /// The SlabMap will not allocate until elements are pushed onto it.
    #[inline]
    pub fn new() -> Self {
        Self {
            entries: Vec::new(),
            next_vacant_idx: INVALID_INDEX,
            len: 0,
            non_optimized: 0,
        }
    }

    /// Constructs a new, empty SlabMap<T> with the specified capacity.
    #[inline]
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            entries: Vec::with_capacity(capacity),
            next_vacant_idx: INVALID_INDEX,
            len: 0,
            non_optimized: 0,
        }
    }

    /// Returns the number of elements the SlabMap can hold without reallocating.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.entries.capacity()
    }

    /// Reserves capacity for at least additional more elements to be inserted in the given SlabMap<T>.
    ///
    /// # Panics
    /// Panics if the new capacity overflows usize.    
    #[inline]
    pub fn reserve(&mut self, additional: usize) {
        self.entries.reserve(self.entries_additional(additional));
    }

    /// Reserves the minimum capacity for exactly additional more elements to be inserted in the given SlabMap<T>.
    ///
    /// # Panics
    /// Panics if the new capacity overflows usize.    
    #[inline]
    pub fn reserve_exact(&mut self, additional: usize) {
        self.entries
            .reserve_exact(self.entries_additional(additional));
    }

    #[inline]
    fn entries_additional(&self, additional: usize) -> usize {
        additional.saturating_sub(self.entries.len() - self.len)
    }

    /// Returns the number of elements in the SlabMap.
    ///
    /// # Examples
    /// ```
    /// use slabmap::SlabMap;
    ///
    /// let mut s = SlabMap::new();
    /// assert_eq!(s.len(), 0);
    ///
    /// let key1 = s.insert(10);
    /// let key2 = s.insert(15);
    ///
    /// assert_eq!(s.len(), 2);
    ///
    /// s.remove(key1);
    /// assert_eq!(s.len(), 1);
    ///
    /// s.remove(key2);
    /// assert_eq!(s.len(), 0);
    /// ```    
    #[inline]
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns true if the SlabMap contains no elements.
    ///    
    /// # Examples
    /// ```
    /// use slabmap::SlabMap;
    ///
    /// let mut s = SlabMap::new();
    /// assert_eq!(s.is_empty(), true);
    ///
    /// let key = s.insert("a");
    /// assert_eq!(s.is_empty(), false);
    ///
    /// s.remove(key);
    /// assert_eq!(s.is_empty(), true);
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Returns a reference to the value corresponding to the key.
    ///
    /// # Examples
    /// ```
    /// use slabmap::SlabMap;
    ///
    /// let mut s = SlabMap::new();
    /// let key = s.insert(100);
    ///
    /// assert_eq!(s.get(key), Some(&100));
    /// assert_eq!(s.get(key + 1), None);
    /// ```
    #[inline]
    pub fn get(&self, key: usize) -> Option<&T> {
        if let Entry::Occupied(value) = self.entries.get(key)? {
            Some(value)
        } else {
            None
        }
    }

    /// Returns a mutable reference to the value corresponding to the key.
    #[inline]
    pub fn get_mut(&mut self, key: usize) -> Option<&mut T> {
        if let Entry::Occupied(value) = self.entries.get_mut(key)? {
            Some(value)
        } else {
            None
        }
    }

    /// Returns true if the SlabMap contains a value for the specified key.
    ///
    /// # Examples
    /// ```
    /// use slabmap::SlabMap;
    ///
    /// let mut s = SlabMap::new();
    /// let key = s.insert(100);
    ///
    /// assert_eq!(s.contains_key(key), true);
    /// assert_eq!(s.contains_key(key + 1), false);
    /// ```
    #[inline]
    pub fn contains_key(&self, key: usize) -> bool {
        self.get(key).is_some()
    }

    /// Inserts a value into the SlabMap.
    ///
    /// Returns the key associated with the value.
    ///
    /// # Examples
    /// ```
    /// use slabmap::SlabMap;
    ///
    /// let mut s = SlabMap::new();
    /// let key_abc = s.insert("abc");
    /// let key_xyz = s.insert("xyz");
    ///
    /// assert_eq!(s[key_abc], "abc");
    /// assert_eq!(s[key_xyz], "xyz");
    /// ```
    pub fn insert(&mut self, value: T) -> usize {
        self.insert_with_key(|_| value)
    }

    /// Inserts a value given by `f` into the SlabMap. The key to be associated with the value is passed to `f`.
    ///
    /// Returns the key associated with the value.
    ///
    /// # Examples
    /// ```
    /// use slabmap::SlabMap;
    ///
    /// let mut s = SlabMap::new();
    /// let key = s.insert_with_key(|key| format!("my key is {}", key));
    ///
    /// assert_eq!(s[key], format!("my key is {}", key));
    /// ```
    #[inline]
    pub fn insert_with_key(&mut self, f: impl FnOnce(usize) -> T) -> usize {
        let idx;
        if self.next_vacant_idx < self.entries.len() {
            idx = self.next_vacant_idx;
            self.next_vacant_idx = match self.entries[idx] {
                Entry::VacantHead { vacant_body_len } => {
                    if vacant_body_len > 0 {
                        self.entries[idx + 1] = Entry::VacantHead {
                            vacant_body_len: vacant_body_len - 1,
                        };
                    }
                    idx + 1
                }
                Entry::VacantTail { next_vacant_idx } => next_vacant_idx,
                Entry::Occupied(_) => unreachable!(),
            };
            self.entries[idx] = Entry::Occupied(f(idx));
            self.non_optimized = self.non_optimized.saturating_sub(1);
        } else {
            idx = self.entries.len();
            self.entries.push(Entry::Occupied(f(idx)));
        }
        self.len += 1;
        idx
    }

    /// Removes a key from the SlabMap, returning the value at the key if the key was previously in the SlabMap.
    ///
    /// # Examples
    /// ```
    /// use slabmap::SlabMap;
    ///
    /// let mut s = SlabMap::new();
    /// let key = s.insert("a");
    /// assert_eq!(s.remove(key), Some("a"));
    /// assert_eq!(s.remove(key), None);
    /// ```
    pub fn remove(&mut self, key: usize) -> Option<T> {
        let is_last = key + 1 == self.entries.len();
        let e = self.entries.get_mut(key)?;
        if !matches!(e, Entry::Occupied(..)) {
            return None;
        }
        self.len -= 1;
        let e = if is_last {
            self.entries.pop().unwrap()
        } else {
            let e = replace(
                e,
                Entry::VacantTail {
                    next_vacant_idx: self.next_vacant_idx,
                },
            );
            self.next_vacant_idx = key;
            self.non_optimized += 1;
            e
        };
        if self.is_empty() {
            self.clear();
        }
        if let Entry::Occupied(value) = e {
            Some(value)
        } else {
            unreachable!()
        }
    }

    /// Clears the SlabMap, removing all values and optimize free spaces.
    ///
    /// # Examples
    /// ```
    /// use slabmap::SlabMap;
    ///
    /// let mut s = SlabMap::new();
    /// s.insert(1);
    /// s.insert(2);
    ///
    /// s.clear();
    ///
    /// assert_eq!(s.is_empty(), true);
    /// ```
    pub fn clear(&mut self) {
        self.entries.clear();
        self.len = 0;
        self.next_vacant_idx = INVALID_INDEX;
        self.non_optimized = 0;
    }

    /// Clears the SlabMap, returning all values as an iterator and optimize free spaces.
    ///
    /// # Examples
    /// ```
    /// use slabmap::SlabMap;
    ///
    /// let mut s = SlabMap::new();
    /// s.insert(10);
    /// s.insert(20);
    ///
    /// let d: Vec<_> = s.drain().collect();
    ///
    /// assert_eq!(s.is_empty(), true);
    /// assert_eq!(d, vec![10, 20]);
    /// ```
    pub fn drain(&mut self) -> Drain<T> {
        let len = self.len;
        self.len = 0;
        self.next_vacant_idx = INVALID_INDEX;
        self.non_optimized = 0;
        Drain {
            iter: self.entries.drain(..),
            len,
        }
    }

    /// Retains only the elements specified by the predicate and optimize free spaces.
    ///
    /// # Examples
    /// ```
    /// use slabmap::SlabMap;
    ///
    /// let mut s = SlabMap::new();
    /// s.insert(10);
    /// s.insert(15);
    /// s.insert(20);
    /// s.insert(25);
    ///
    /// s.retain(|_idx, value| *value % 2 == 0);
    ///
    /// let value: Vec<_> = s.values().cloned().collect();
    /// assert_eq!(value, vec![10, 20]);
    /// ```
    pub fn retain(&mut self, f: impl FnMut(usize, &mut T) -> bool) {
        let mut f = f;
        let mut idx = 0;
        let mut idx_vacant_start = 0;
        self.next_vacant_idx = INVALID_INDEX;
        while let Some(e) = self.entries.get_mut(idx) {
            match e {
                Entry::VacantTail { .. } => {
                    idx += 1;
                }
                Entry::VacantHead { vacant_body_len } => {
                    idx += *vacant_body_len + 2;
                }
                Entry::Occupied(value) => {
                    if f(idx, value) {
                        self.merge_vacant(idx_vacant_start, idx);
                        idx += 1;
                        idx_vacant_start = idx;
                    } else {
                        self.entries[idx] = Entry::VacantTail {
                            next_vacant_idx: INVALID_INDEX,
                        };
                        idx += 1;
                    }
                }
            }
        }
        self.entries.truncate(idx_vacant_start);
        self.non_optimized = 0;
    }

    /// Optimizing the free space for speeding up iterations.
    ///
    /// If the free space has already been optimized, this method does nothing and completes with O(1).
    ///
    /// # Examples
    /// ```
    /// use slabmap::SlabMap;
    /// use std::time::Instant;
    ///
    /// let mut s = SlabMap::new();
    /// const COUNT: usize = 1000000;
    /// for i in 0..COUNT {
    ///     s.insert(i);
    /// }
    /// let keys: Vec<_> = s.keys().take(COUNT - 1).collect();
    /// for key in keys {
    ///     s.remove(key);
    /// }
    ///
    /// s.optimize(); // if comment out this line, `s.values().sum()` to be slow.
    ///
    /// let begin = Instant::now();
    /// let sum: usize = s.values().sum();
    /// println!("sum : {}", sum);
    /// println!("duration : {} ms", (Instant::now() - begin).as_millis());
    /// ```
    pub fn optimize(&mut self) {
        if !self.is_optimized() {
            self.retain(|_, _| true);
        }
    }
    #[inline]
    fn is_optimized(&self) -> bool {
        self.non_optimized == 0
    }
    fn merge_vacant(&mut self, start: usize, end: usize) {
        if start < end {
            if start < end - 1 {
                self.entries[start] = Entry::VacantHead {
                    vacant_body_len: end - start - 2,
                }
            }
            self.entries[end - 1] = Entry::VacantTail {
                next_vacant_idx: self.next_vacant_idx,
            };
            self.next_vacant_idx = start;
        }
    }

    /// Gets an iterator over the entries of the SlabMap, sorted by key.
    ///
    /// If you make a large number of [`remove`](SlabMap::remove) calls, [`optimize`](SlabMap::optimize) should be called before calling this function.
    #[inline]
    pub fn iter(&self) -> Iter<T> {
        Iter {
            iter: self.entries.iter().enumerate(),
            len: self.len,
        }
    }

    /// Gets a mutable iterator over the entries of the slab, sorted by key.
    ///
    /// If you make a large number of [`remove`](SlabMap::remove) calls, [`optimize`](SlabMap::optimize) should be called before calling this function.
    #[inline]
    pub fn iter_mut(&mut self) -> IterMut<T> {
        IterMut {
            iter: self.entries.iter_mut().enumerate(),
            len: self.len,
        }
    }

    /// Gets an iterator over the keys of the SlabMap, in sorted order.
    ///
    /// If you make a large number of [`remove`](SlabMap::remove) calls, [`optimize`](SlabMap::optimize) should be called before calling this function.
    #[inline]
    pub fn keys(&self) -> Keys<T> {
        Keys(self.iter())
    }

    /// Gets an iterator over the values of the SlabMap.
    ///
    /// If you make a large number of [`remove`](SlabMap::remove) calls, [`optimize`](SlabMap::optimize) should be called before calling this function.
    #[inline]
    pub fn values(&self) -> Values<T> {
        Values(self.iter())
    }

    /// Gets a mutable iterator over the values of the SlabMap.
    ///
    /// If you make a large number of [`remove`](SlabMap::remove) calls, [`optimize`](SlabMap::optimize) should be called before calling this function.
    #[inline]
    pub fn values_mut(&mut self) -> ValuesMut<T> {
        ValuesMut(self.iter_mut())
    }
}
impl<T> Default for SlabMap<T> {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}
impl<T: Debug> Debug for SlabMap<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_map().entries(self.iter()).finish()
    }
}

impl<T> std::ops::Index<usize> for SlabMap<T> {
    type Output = T;

    #[inline]
    fn index(&self, index: usize) -> &Self::Output {
        self.get(index).expect("out of index.")
    }
}
impl<T> std::ops::IndexMut<usize> for SlabMap<T> {
    #[inline]
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        self.get_mut(index).expect("out of index.")
    }
}

impl<T> IntoIterator for SlabMap<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        IntoIter {
            iter: self.entries.into_iter(),
            len: self.len,
        }
    }
}

impl<'a, T> IntoIterator for &'a SlabMap<T> {
    type Item = (usize, &'a T);
    type IntoIter = Iter<'a, T>;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}
impl<'a, T> IntoIterator for &'a mut SlabMap<T> {
    type Item = (usize, &'a mut T);
    type IntoIter = IterMut<'a, T>;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

/// An owning iterator over the values of a SlabMap.
///
/// This struct is created by the `into_iter` method on [`SlabMap`] (provided by the IntoIterator trait).
pub struct IntoIter<T> {
    iter: std::vec::IntoIter<Entry<T>>,
    len: usize,
}
impl<T> Iterator for IntoIter<T> {
    type Item = T;
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let mut e_opt = self.iter.next();
        while let Some(e) = e_opt {
            e_opt = match e {
                Entry::Occupied(value) => {
                    self.len -= 1;
                    return Some(value);
                }
                Entry::VacantHead { vacant_body_len } => self.iter.nth(vacant_body_len + 1),
                Entry::VacantTail { .. } => self.iter.next(),
            }
        }
        None
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
    #[inline]
    fn count(self) -> usize
    where
        Self: Sized,
    {
        self.len
    }
}

/// A draining iterator for SlabMap<T>.
///
/// This struct is created by the [`drain`](SlabMap::drain) method on [`SlabMap`].
pub struct Drain<'a, T> {
    iter: std::vec::Drain<'a, Entry<T>>,
    len: usize,
}
impl<'a, T> Iterator for Drain<'a, T> {
    type Item = T;
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let mut e_opt = self.iter.next();
        while let Some(e) = e_opt {
            e_opt = match e {
                Entry::Occupied(value) => {
                    self.len -= 1;
                    return Some(value);
                }
                Entry::VacantHead { vacant_body_len } => self.iter.nth(vacant_body_len + 1),
                Entry::VacantTail { .. } => self.iter.next(),
            }
        }
        None
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
    #[inline]
    fn count(self) -> usize
    where
        Self: Sized,
    {
        self.len
    }
}

/// An iterator over the entries of a SlabMap.
///
/// This struct is created by the [`iter`](SlabMap::iter) method on [`SlabMap`].
pub struct Iter<'a, T> {
    iter: std::iter::Enumerate<std::slice::Iter<'a, Entry<T>>>,
    len: usize,
}
impl<'a, T> Iterator for Iter<'a, T> {
    type Item = (usize, &'a T);
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let mut e_opt = self.iter.next();
        while let Some(e) = e_opt {
            e_opt = match e {
                (key, Entry::Occupied(value)) => {
                    self.len -= 1;
                    return Some((key, value));
                }
                (_, Entry::VacantHead { vacant_body_len }) => self.iter.nth(*vacant_body_len + 1),
                (_, Entry::VacantTail { .. }) => self.iter.next(),
            }
        }
        None
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
    #[inline]
    fn count(self) -> usize
    where
        Self: Sized,
    {
        self.len
    }
}
impl<'a, T> FusedIterator for Iter<'a, T> {}
impl<'a, T> ExactSizeIterator for Iter<'a, T> {}

/// A mutable iterator over the entries of a SlabMap.
///
/// This struct is created by the [`iter_mut`](SlabMap::iter_mut) method on [`SlabMap`].
pub struct IterMut<'a, T> {
    iter: std::iter::Enumerate<std::slice::IterMut<'a, Entry<T>>>,
    len: usize,
}
impl<'a, T> Iterator for IterMut<'a, T> {
    type Item = (usize, &'a mut T);
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let mut e_opt = self.iter.next();
        while let Some(e) = e_opt {
            e_opt = match e {
                (key, Entry::Occupied(value)) => {
                    self.len -= 1;
                    return Some((key, value));
                }
                (_, Entry::VacantHead { vacant_body_len }) => self.iter.nth(*vacant_body_len + 1),
                (_, Entry::VacantTail { .. }) => self.iter.next(),
            }
        }
        None
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
    #[inline]
    fn count(self) -> usize
    where
        Self: Sized,
    {
        self.len
    }
}
impl<'a, T> FusedIterator for IterMut<'a, T> {}
impl<'a, T> ExactSizeIterator for IterMut<'a, T> {}

/// An iterator over the keys of a SlabMap.
///
/// This struct is created by the [`keys`](SlabMap::keys) method on [`SlabMap`].
pub struct Keys<'a, T>(Iter<'a, T>);
impl<'a, T> Iterator for Keys<'a, T> {
    type Item = usize;
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|(k, _)| k)
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
    #[inline]
    fn count(self) -> usize
    where
        Self: Sized,
    {
        self.0.count()
    }
}
impl<'a, T> FusedIterator for Keys<'a, T> {}
impl<'a, T> ExactSizeIterator for Keys<'a, T> {}

/// An iterator over the values of a SlabMap.
///
/// This struct is created by the [`values`](SlabMap::values) method on [`SlabMap`].
pub struct Values<'a, T>(Iter<'a, T>);
impl<'a, T> Iterator for Values<'a, T> {
    type Item = &'a T;
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|(_, v)| v)
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
    #[inline]
    fn count(self) -> usize
    where
        Self: Sized,
    {
        self.0.count()
    }
}
impl<'a, T> FusedIterator for Values<'a, T> {}
impl<'a, T> ExactSizeIterator for Values<'a, T> {}

/// A mutable iterator over the values of a SlabMap.
///
/// This struct is created by the [`values_mut`](SlabMap::values_mut) method on [`SlabMap`].
pub struct ValuesMut<'a, T>(IterMut<'a, T>);
impl<'a, T> Iterator for ValuesMut<'a, T> {
    type Item = &'a mut T;
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|(_, v)| v)
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
    #[inline]
    fn count(self) -> usize
    where
        Self: Sized,
    {
        self.0.count()
    }
}
impl<'a, T> FusedIterator for ValuesMut<'a, T> {}
impl<'a, T> ExactSizeIterator for ValuesMut<'a, T> {}