1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//! The simulator module provides the mechanics to orchestrate the models and
//! connectors via discrete event simulation.  The specific formalism for
//! simulation execution is the Discrete Event System Specification.  User
//! interaction is also captured in this module - simulation stepping and
//! input injection.
//!
//! `Simulation` and `WebSimulation` are used for Rust- and npm-based
//! projects, respectively.  The `Simulation` methods use the associated
//! struct types directly, while the `WebSimulation` provides an interface
//! with better JS/WASM compatibility.
//!
//! Most simulation analysis will involve the collection, transformation,
//! and analysis of messages.  The `step`, `step_n`, and `step_until` methods
//! return the messages generated during the execution of the simulation
//! step(s), for use in message analysis.

use std::f64::INFINITY;

use serde::{Deserialize, Serialize};

use crate::models::{AsModel, Model, ModelMessage};
use crate::utils::error::SimulationError;
use crate::utils::set_panic_hook;

pub mod coupling;
pub mod services;
pub mod web;

pub use self::coupling::{Connector, Message};
pub use self::services::Services;
pub use self::web::WebSimulation;

/// The `Simulation` struct is the core of sim, and includes everything
/// needed to run a simulation - models, connectors, and a random number
/// generator.  State information, specifically global time and active
/// messages are additionally retained in the struct.
#[derive(Clone, Default, Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct Simulation {
    models: Vec<Model>,
    connectors: Vec<Connector>,
    messages: Vec<Message>,
    services: Services,
}

impl Simulation {
    /// This constructor method creates a simulation from a supplied
    /// configuration (models and connectors).
    pub fn post(models: Vec<Model>, connectors: Vec<Connector>) -> Self {
        set_panic_hook();
        Self {
            models,
            connectors,
            ..Self::default()
        }
    }

    /// This method sets the models and connectors of an existing simulation.
    pub fn put(&mut self, models: Vec<Model>, connectors: Vec<Connector>) {
        self.models = models;
        self.connectors = connectors;
    }

    /// Simulation steps generate messages, which are then consumed on
    /// subsequent simulation steps.  These messages between models in a
    /// simulation drive much of the discovery, analysis, and design.  This
    /// accessor method provides the list of active messages, at the current
    /// point of time in the simulation.  Message history is not retained, so
    /// simulation products and projects should collect messages as needed
    /// throughout the simulation execution.
    pub fn get_messages(&self) -> &Vec<Message> {
        &self.messages
    }

    /// An accessor method for the simulation global time.
    pub fn get_global_time(&self) -> f64 {
        self.services.global_time()
    }

    /// This method provides a mechanism for getting the status of any model
    /// in a simulation.  The method takes the model ID as an argument, and
    /// returns the current status string for that model.
    pub fn status(&self, model_id: &str) -> Result<String, SimulationError> {
        Ok(self
            .models
            .iter()
            .find(|model| model.id() == model_id)
            .ok_or_else(|| SimulationError::ModelNotFound)?
            .status())
    }

    /// To enable simulation replications, the reset method resets the state
    /// of the simulation, except for the random number generator.
    /// Recreating a simulation from scratch for additional replications
    /// does not work, due to the random number generator seeding.
    pub fn reset(&mut self) {
        self.reset_messages();
        self.reset_global_time();
    }

    /// Clear the active messages in a simulation.
    pub fn reset_messages(&mut self) {
        self.messages = Vec::new();
    }

    /// Reset the simulation global time to 0.0.
    pub fn reset_global_time(&mut self) {
        self.services.set_global_time(0.0);
    }

    /// This method provides a convenient foundation for operating on the
    /// full set of models in the simulation.
    pub fn models(&mut self) -> Vec<&mut Model> {
        self.models.iter_mut().collect()
    }

    /// This method constructs a list of target IDs for a given source model
    /// ID and port.  This message target information is derived from the
    /// connectors configuration.
    fn get_message_target_ids(&self, source_id: &str, source_port: &str) -> Vec<String> {
        self.connectors
            .iter()
            .filter_map(|connector| {
                if connector.source_id() == source_id && connector.source_port() == source_port {
                    Some(connector.target_id().to_string())
                } else {
                    None
                }
            })
            .collect()
    }

    /// This method constructs a list of target ports for a given source model
    /// ID and port.  This message target information is derived from the
    /// connectors configuration.
    fn get_message_target_ports(&self, source_id: &str, source_port: &str) -> Vec<String> {
        self.connectors
            .iter()
            .filter_map(|connector| {
                if connector.source_id() == source_id && connector.source_port() == source_port {
                    Some(connector.target_port().to_string())
                } else {
                    None
                }
            })
            .collect()
    }

    /// Input injection creates a message during simulation execution,
    /// without needing to create that message through the standard
    /// simulation constructs.  This enables live simulation interaction,
    /// disruption, and manipulation - all through the standard simulation
    /// message system.
    pub fn inject_input(&mut self, message: Message) {
        self.messages.push(message);
    }

    /// The simulation step is foundational for a discrete event simulation.
    /// This method executes a single discrete event simulation step,
    /// including internal state transitions, external state transitions,
    /// message orchestration, global time accounting, and step messages
    /// output.
    pub fn step(&mut self) -> Result<Vec<Message>, SimulationError> {
        let messages = self.messages.clone();
        let mut next_messages: Vec<Message> = Vec::new();
        // Process external events and gather associated messages
        if !messages.is_empty() {
            let errors: Result<(), SimulationError> = (0..self.models.len())
                .map(|model_index| -> Result<(), SimulationError> {
                    let model_messages: Vec<ModelMessage> = messages
                        .iter()
                        .filter_map(|message| {
                            if message.target_id() == self.models[model_index].id() {
                                Some(ModelMessage {
                                    port_name: message.target_port().to_string(),
                                    content: message.content().to_string(),
                                })
                            } else {
                                None
                            }
                        })
                        .collect();
                    model_messages
                        .iter()
                        .map(|model_message| -> Result<(), SimulationError> {
                            self.models[model_index]
                                .events_ext(model_message.clone(), &mut self.services)?
                                .iter()
                                .for_each(|outgoing_message| {
                                    let target_ids = self.get_message_target_ids(
                                        &self.models[model_index].id(), // Outgoing message source model ID
                                        &outgoing_message.port_name, // Outgoing message source model port
                                    );
                                    let target_ports = self.get_message_target_ports(
                                        &self.models[model_index].id(), // Outgoing message source model ID
                                        &outgoing_message.port_name, // Outgoing message source model port
                                    );
                                    target_ids.iter().zip(target_ports.iter()).for_each(
                                        |(target_id, target_port)| {
                                            next_messages.push(Message::new(
                                                self.models[model_index].id().to_string(),
                                                outgoing_message.port_name.clone(),
                                                target_id.clone(),
                                                target_port.clone(),
                                                self.services.global_time(),
                                                outgoing_message.content.clone(),
                                            ));
                                        },
                                    );
                                });
                            Ok(())
                        })
                        .collect()
                })
                .collect();
            errors?;
        }
        // Process internal events and gather associated messages
        let until_next_event: f64;
        if self.messages.is_empty() {
            until_next_event = self.models().iter().fold(INFINITY, |min, model| {
                f64::min(min, model.until_next_event())
            });
        } else {
            until_next_event = 0.0;
        }
        self.models().iter_mut().for_each(|model| {
            model.time_advance(until_next_event);
        });
        self.services
            .set_global_time(self.services.global_time() + until_next_event);
        let errors: Result<Vec<()>, SimulationError> = (0..self.models.len())
            .map(|model_index| -> Result<(), SimulationError> {
                self.models[model_index]
                    .events_int(&mut self.services)?
                    .iter()
                    .for_each(|outgoing_message| {
                        let target_ids = self.get_message_target_ids(
                            &self.models[model_index].id(), // Outgoing message source model ID
                            &outgoing_message.port_name,    // Outgoing message source model port
                        );
                        let target_ports = self.get_message_target_ports(
                            &self.models[model_index].id(), // Outgoing message source model ID
                            &outgoing_message.port_name,    // Outgoing message source model port
                        );
                        target_ids.iter().zip(target_ports.iter()).for_each(
                            |(target_id, target_port)| {
                                next_messages.push(Message::new(
                                    self.models[model_index].id().to_string(),
                                    outgoing_message.port_name.clone(),
                                    target_id.clone(),
                                    target_port.clone(),
                                    self.services.global_time(),
                                    outgoing_message.content.clone(),
                                ));
                            },
                        );
                    });
                Ok(())
            })
            .collect();
        errors?;
        self.messages = next_messages;
        Ok(self.get_messages().to_vec())
    }

    /// This method executes simulation `step` calls, until a global time
    /// has been exceeded.  At which point, the messages from all the
    /// simulation steps are returned.
    pub fn step_until(&mut self, until: f64) -> Result<Vec<Message>, SimulationError> {
        let mut message_records: Vec<Message> = Vec::new();
        loop {
            self.step()?;
            if self.services.global_time() < until {
                message_records.extend(self.get_messages().clone());
            } else {
                break;
            }
        }
        Ok(message_records)
    }

    /// This method executes the specified number of simulation steps, `n`.
    /// Upon execution of the n steps, the messages from all the steps are
    /// returned.
    pub fn step_n(&mut self, n: usize) -> Result<Vec<Message>, SimulationError> {
        let mut message_records: Vec<Message> = Vec::new();
        (0..n)
            .map(|_| -> Result<Vec<Message>, SimulationError> {
                self.step()?;
                message_records.extend(self.messages.clone());
                Ok(Vec::new())
            })
            .find(|result| result.is_err())
            .unwrap_or(Ok(message_records))
    }
}