1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//! The Signals crate is an asynchronous functional-reactive-like api.
//!
//! # Installation
//!
//! Add this to cargo.toml
//! ```text
//! [dependencies]
//! signals = "*"
//! ```
//!
//! Add this to your crate
//! ```text
//! extern crate signals; 
//! ```
//!
//! # Simple Example
//!
//! ```should_panic
//! use signals::{Signal, Emitter, AmEmitter};
//!
//! fn main() {
//!     // create a signal that will assert when emitted
//!     let signal = Signal::new_arc_mutex( |x: u32| Ok(x) );
//!     let listener = Signal::new_arc_mutex( |x: u32| { assert_ne!(x, 5); Ok(()) } ); //fail!
//!     
//!     // when signal is emitted, listener should execute.
//!     signal.lock().register_listener(&listener);
//!
//!     // emit signal
//!     signal.lock().emit(5);
//! }
//! ```
//!
//! # Complex Example
//!
//! ```should_panic
//! use signals::{Signal, Emitter};
//!
//! fn main() {
//!     // create a bunch of signals. At the last signal, we should fail. 
//!     // If we do not fail, the signals did not work.
//!     let root = Signal::new_arc_mutex( |x: u32| Ok(x.to_string()) ); //convert x to string.
//!     let peek = Signal::new_arc_mutex( |x: String| { println!("Peek: {}", x); Ok(()) } );
//!     let to_i32 = Signal::new_arc_mutex( |x: String| Ok(x.parse::<i32>()?) ); //convert to integer
//!     let inc = Signal::new_arc_mutex( |x: i32| Ok(x+1) ); //increment value
//!     let fail = Signal::new_arc_mutex( |x: i32| { assert_ne!(x, 8); Ok(()) } ); //fail!
//!     
//!     //connect all signals together.
//!     root.lock().register_listener(&peek); // snoop on the value! - because we can!
//!     root.lock().register_listener(&to_i32); // parse the string to an integer
//!     to_i32.lock().register_listener(&inc); //increment the value
//!     inc.lock().register_listener(&fail); //then finally fail if the value is 8!
//!     
//!     root.lock().emit(7); //7 will increment to 8 and fail!
//! }
//! ```

extern crate failure;

//external imports
use failure::Error;

//standard imports
use std::marker::PhantomData;
use std::sync::{Arc, Weak, Mutex, MutexGuard};
use std::thread;

/// This is a polymorphic trait allowing multiple generic signals to be stored in a list.
pub trait Emitter: Send {
    type input;
    
    /// Start running the built in callback functionality with the signal. Pass on the values to children.
    fn emit(&mut self, Self::input);
}

// because Arc<Mutex<T>> is sloppy
#[derive(Clone)]
pub struct Am<T: Sized>(Arc<Mutex<T>>);

pub type Wm<T> = Weak<Mutex<T>>;
pub type AmEmitter<T> = Am<Emitter<input=T>>;
type WmEmitter<T> = Wm<Emitter<input=T>>;

impl<T: Sized> Am<T> {
    pub fn new(data: T) -> Self {
        Am(Arc::new(Mutex::new(data)))
    }

    pub fn lock(&self) -> MutexGuard<'_, T> {
        self.0.lock().unwrap()
    }

    pub fn clone(&self) -> Self {
        Am(self.0.clone())
    }
}

/// When creating a Signal, This trait represents the closure Fn allowed.
pub trait SigFn<I, O>: Fn(I) -> Result<O, Error> {}
impl<F, I, O> SigFn<I, O> for F where F: Fn(I) -> Result<O, Error> {}

impl<I,O,F> Emitter for Signal<I,O,F> 
    where F: 'static + SigFn<I, O> + Send + Sync,
          O: 'static + PartialEq + Send + Sync + Clone,
          I: 'static + Send + Sync
{
    type input = I;
    
    /// Run closure implemented for signal and pass on the results to children.
    fn emit(&mut self, data: Self::input) {
        let output = (self.func)(data);

        match output {
            Ok(output) => {
                // Exit out of loop if the output didn't change.
                if let Some(ref out) = self.output {
                    if *out == output {
                        return;
                    }
                }
                
                // There are no no errors, emit signals for all children.
                self.output = Some(output);
                self.emit_children();
            },
            Err(e) => println!("Error: {:?}", e),
        };
    }
}

/// Signals are the bread and butter of the crate.  A signal can trigger other signals whose input is the same output as the original signal. Signals support both threaded and non-threaded children.
pub struct Signal<I, O, F> 
    where F: SigFn<I, O> 
{
    input: PhantomData<I>,
    output: Option<O>,
    func: F,

    listeners: Vec< WmEmitter<O> >,
    threaded_listeners: Vec< WmEmitter<O> >,
}

impl<I,O,F> Signal<I,O,F> 
    where F: 'static + SigFn<I, O> + Send + Sync,
          O: 'static + Send + Sync + Clone,
          I: 'static + Send + Sync,
{
    fn new_signal(f: F) -> Signal<I, O, impl SigFn<I, O>> {
        Signal {
            input: PhantomData,
            output: None,
            func: move |i: _| f(i),
            listeners: Vec::new(),
            threaded_listeners: Vec::new(),
        }
    }

    /// Create a thread-safe parent signal. Note that the return function is Arc<Mutex<Signal<>>>
    pub fn new_arc_mutex(f: F) -> Am<Signal<I, O, impl SigFn<I, O>>> {
        Am::new(Signal::new_signal(f))
    }

    /// Upgrade all weak emitters, and call emit(...)
    fn emit_children(&mut self) {
        //emit instant listeners
        for signal in self.listeners.iter() {
            let output = self.output.clone();
            Self::emit_child(signal.clone(), output);
        }
        
        //emit threaded listeners
        for signal in self.threaded_listeners.iter() {
            let signal = signal.clone();
            let output = self.output.clone();
            thread::spawn( move || Self::emit_child(signal, output) );
        }
    }

    fn emit_child(signal: WmEmitter<O>, output: Option<O>) {
        if let Some(signal) = signal.upgrade() {
            if let Some(ref output) = output {
                let output = output.clone();
                if let Ok(mut signal) = signal.lock() {
                    signal.emit(output);
                }
            }
        }
    }

    /// This method is a helper for Signal::new(f) and register_listener(...)
    pub fn create_listener<Q, G>(&mut self, f: G) -> Am<Signal<O, Q, impl SigFn<O,Q>>>
        where G: 'static + SigFn<O,Q> + Send + Sync,
              Q: 'static + PartialEq + Send + Sync + Clone,
              O: 'static
    {
        let ret = Signal::new_arc_mutex(f);
        self.register_listener(&ret);
        ret
    }
    
    /// This method is a helper for Signal::new(f) and register_threaded_listener(...)
    pub fn create_threaded_listener<Q, G>(&mut self, f: G) -> Am<Signal<O, Q, impl SigFn<O,Q>>>
        where G: 'static + SigFn<O,Q> + Send + Sync,
              Q: 'static + PartialEq + Send + Sync + Clone,
              O: 'static
    {
        let ret = Signal::new_arc_mutex(f);
        self.register_threaded_listener(&ret);
        ret
    }
    
    /// Register a child listener that will execute in the same thread as Self.
    pub fn register_listener<E>(&mut self, strong: &Am<E>) 
        where E: 'static + Emitter<input=O>
    {
        let weak = Arc::downgrade(&strong.0);
        self.listeners.push(weak);
    }
    
    /// Register a child listener that will run on its own thread.
    pub fn register_threaded_listener<E>(&mut self, strong: &Am<E>) 
        where E: 'static + Emitter<input=O>
    {
        let weak = Arc::downgrade(&strong.0);
        self.threaded_listeners.push(weak);
    }

    /// Get the last result of this signal... if it exists
    pub fn get(&self) -> &Option<O> { &self.output }
}