1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//! Event channel, pull based, that use a ringbuffer for internal
//! storage, to make it possible to do immutable reads.
//!
//! See examples directory for examples.

#![warn(missing_docs)]

pub use crate::storage::{ReaderId, StorageIterator as EventIterator};

use crate::storage::RingBuffer;

mod storage;
mod util;

/// Marker trait for data to use with the EventChannel.
///
/// Has an implementation for all types where its bounds are satisfied.
pub trait Event: Send + Sync + 'static {}

impl<T> Event for T where T: Send + Sync + 'static {}

const DEFAULT_CAPACITY: usize = 64;

/// Event channel
#[derive(Debug)]
pub struct EventChannel<E> {
    storage: RingBuffer<E>,
}

impl<E> Default for EventChannel<E>
where
    E: Event,
{
    fn default() -> Self {
        EventChannel::with_capacity(DEFAULT_CAPACITY)
    }
}

impl<E> EventChannel<E>
where
    E: Event,
{
    /// Create a new EventChannel with a default size of 50
    pub fn new() -> Self {
        Default::default()
    }

    /// Create a new EventChannel with the given starting capacity.
    pub fn with_capacity(size: usize) -> Self {
        Self {
            storage: RingBuffer::new(size),
        }
    }

    /// Returns `true` if any reader would observe an additional event.
    ///
    /// This can be used to skip calls to `iter_write` in case the event construction
    /// is expensive.
    pub fn would_write(&mut self) -> bool {
        self.storage.would_write()
    }

    /// Register a reader.
    ///
    /// To be able to read events, a reader id is required. This is because
    /// otherwise the channel wouldn't know where in the ringbuffer the
    /// reader has read to earlier. This information is stored in the reader
    /// id.
    pub fn register_reader(&mut self) -> ReaderId<E> {
        self.storage.new_reader_id()
    }

    /// Write a slice of events into storage
    #[deprecated(note = "please use `iter_write` instead")]
    pub fn slice_write(&mut self, events: &[E])
    where
        E: Clone,
    {
        self.storage.iter_write(events.into_iter().cloned());
    }

    /// Write an iterator of events into storage
    pub fn iter_write<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = E>,
        I::IntoIter: ExactSizeIterator,
    {
        self.storage.iter_write(iter);
    }

    /// Drain a vector of events into storage.
    pub fn drain_vec_write(&mut self, events: &mut Vec<E>) {
        self.storage.drain_vec_write(events);
    }

    /// Write a single event into storage.
    pub fn single_write(&mut self, event: E) {
        self.storage.single_write(event);
    }

    /// Read any events that have been written to storage since the last read with `reader_id`.
    ///
    /// Note that this will advance the position of the reader regardless of what you do with the
    /// iterator. In other words, calling `read` without iterating the result won't preserve the
    /// events returned. You need to iterate all the events as soon as you got them from this
    /// method. This behavior is equivalent to e.g. `Vec::drain`.
    pub fn read(&self, reader_id: &mut ReaderId<E>) -> EventIterator<E> {
        self.storage.read(reader_id)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[derive(Debug, Clone, PartialEq)]
    struct Test {
        pub id: u32,
    }

    #[test]
    fn test_grow() {
        let mut channel = EventChannel::with_capacity(10);

        let mut reader0 = channel.register_reader();
        let mut reader1 = channel.register_reader();

        channel.iter_write(vec![1, 2, 3, 4, 5, 6, 7, 8]);

        let data = channel.read(&mut reader0).cloned().collect::<Vec<_>>();
        assert_eq!(data, vec![1, 2, 3, 4, 5, 6, 7, 8]);

        channel.iter_write(vec![9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]);

        let data = channel.read(&mut reader0).cloned().collect::<Vec<_>>();
        assert_eq!(
            data,
            vec![9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
        );

        for i in 23..10_000 {
            channel.single_write(i);
        }

        let data = channel.read(&mut reader1).cloned().collect::<Vec<_>>();
        assert_eq!(data, (1..10_000).collect::<Vec<_>>());
    }

    #[test]
    fn test_read_write() {
        let mut channel = EventChannel::with_capacity(14);

        let mut reader_id = channel.register_reader();
        let mut reader_id_extra = channel.register_reader();

        channel.single_write(Test { id: 1 });
        assert_eq!(
            vec![Test { id: 1 }],
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );
        channel.single_write(Test { id: 2 });
        assert_eq!(
            vec![Test { id: 2 }],
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );

        assert_eq!(
            vec![Test { id: 1 }, Test { id: 2 }],
            channel
                .read(&mut reader_id_extra)
                .cloned()
                .collect::<Vec<_>>()
        );

        channel.single_write(Test { id: 3 });
        assert_eq!(
            vec![Test { id: 3 }],
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );
        assert_eq!(
            vec![Test { id: 3 }],
            channel
                .read(&mut reader_id_extra)
                .cloned()
                .collect::<Vec<_>>()
        );
    }

    // There was previously a case where the tests worked but the example didn't, so
    // the example was added as a test case.
    #[test]
    fn test_example() {
        let mut channel = EventChannel::new();

        channel.drain_vec_write(&mut vec![TestEvent { data: 1 }, TestEvent { data: 2 }]);

        let mut reader_id = channel.register_reader();

        // Should be empty, because reader was created after the write
        assert_eq!(
            Vec::<TestEvent>::default(),
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );

        // Should have data, as a second write was done
        channel.single_write(TestEvent { data: 5 });

        assert_eq!(
            vec![TestEvent { data: 5 }],
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );

        // We can also just send in an iterator.
        channel.iter_write(
            [TestEvent { data: 8 }, TestEvent { data: 9 }]
                .iter()
                .cloned(),
        );

        assert_eq!(
            vec![TestEvent { data: 8 }, TestEvent { data: 9 }],
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );
    }

    #[derive(Clone, Debug, PartialEq, Eq)]
    pub struct TestEvent {
        data: u32,
    }
}