1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//! Event channel, pull based, that use a ringbuffer for internal
//! storage, to make it possible to do immutable reads.
//!
//! See examples directory for examples.

#![deny(missing_docs)]

pub use storage::ReaderId;
pub use storage::StorageIterator as EventIterator;

use storage::RingBufferStorage;

mod storage;

/// Marker trait for data to use with the EventChannel.
///
/// Has an implementation for all types where its bounds are satisfied.
pub trait Event: Send + Sync + 'static {}

impl<T> Event for T
where
    T: Send + Sync + 'static,
{
}

const DEFAULT_CAPACITY: usize = 50;

/// Event channel
pub struct EventChannel<E> {
    storage: RingBufferStorage<E>,
}

impl<E> EventChannel<E>
where
    E: Event,
{
    /// Create a new EventChannel with a default size of 200
    pub fn new() -> Self {
        Self::with_capacity(DEFAULT_CAPACITY)
    }

    /// Create a new EventChannel with the given starting capacity.
    pub fn with_capacity(size: usize) -> Self {
        Self {
            storage: RingBufferStorage::new(size),
        }
    }

    /// Register a reader.
    ///
    /// To be able to read events, a reader id is required. This is because otherwise the channel
    /// wouldn't know where in the ringbuffer the reader has read to earlier. This information is
    /// stored in the reader id.
    pub fn register_reader(&mut self) -> ReaderId<E> {
        self.storage.new_reader_id()
    }

    /// Write a slice of events into storage
    #[deprecated(note = "please use `iter_write` instead")]
    pub fn slice_write(&mut self, events: &[E])
    where
        E: Clone,
    {
        self.storage.iter_write(events.into_iter().cloned());
    }

    /// Write an iterator of events into storage
    pub fn iter_write<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = E>,
    {
        self.storage.iter_write(iter);
    }

    /// Drain a vector of events into storage.
    pub fn drain_vec_write(&mut self, events: &mut Vec<E>) {
        self.storage.drain_vec_write(events);
    }

    /// Write a single event into storage.
    pub fn single_write(&mut self, event: E) {
        self.storage.single_write(event);
    }

    /// Read any events that have been written to storage since the readers last read.
    pub fn read(&self, reader_id: &mut ReaderId<E>) -> EventIterator<E> {
        self.storage.read(reader_id)
    }
}

#[cfg(test)]
mod tests {

    use super::*;

    #[derive(Debug, Clone, PartialEq)]
    struct Test {
        pub id: u32,
    }

    #[test]
    fn test_read_write() {
        let mut channel = EventChannel::with_capacity(14);

        let mut reader_id = channel.register_reader();
        let mut reader_id_extra = channel.register_reader();

        channel.single_write(Test { id: 1 });
        assert_eq!(
            vec![Test { id: 1 }],
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );
        channel.single_write(Test { id: 2 });
        assert_eq!(
            vec![Test { id: 2 }],
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );

        assert_eq!(
            vec![Test { id: 1 }, Test { id: 2 }],
            channel
                .read(&mut reader_id_extra)
                .cloned()
                .collect::<Vec<_>>()
        );

        channel.single_write(Test { id: 3 });
        assert_eq!(
            vec![Test { id: 3 }],
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );
        assert_eq!(
            vec![Test { id: 3 }],
            channel
                .read(&mut reader_id_extra)
                .cloned()
                .collect::<Vec<_>>()
        );
    }

    // There was previously a case where the tests worked but the example didn't, so the example
    // was added as a test case.
    #[test]
    fn test_example() {
        let mut channel = EventChannel::new();

        channel.drain_vec_write(&mut vec![TestEvent { data: 1 }, TestEvent { data: 2 }]);

        let mut reader_id = channel.register_reader();

        // Should be empty, because reader was created after the write
        assert_eq!(
            Vec::<TestEvent>::default(),
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );

        // Should have data, as a second write was done
        channel.single_write(TestEvent { data: 5 });

        assert_eq!(
            vec![TestEvent { data: 5 }],
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );

        // We can also just send in an iterator.
        channel.iter_write(
            [TestEvent { data: 8 }, TestEvent { data: 9 }]
                .iter()
                .cloned(),
        );

        assert_eq!(
            vec![TestEvent { data: 8 }, TestEvent { data: 9 }],
            channel.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );
    }

    #[derive(Clone, Debug, PartialEq, Eq)]
    pub struct TestEvent {
        data: u32,
    }
}