1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
//! A minimal implementation of SHA1 for rust.
//!
//! Example:
//!
//! ```rust
//! extern crate sha1;
//! # fn main() {
//!
//! let mut m = sha1::Sha1::new();
//! m.update(b"Hello World!");
//! assert_eq!(m.digest().to_string(),
//!            "2ef7bde608ce5404e97d5f042f95f89f1c232871");
//! # }
//! ```

#![no_std]
#![deny(missing_docs)]

use core::cmp;
use core::fmt;

/// Represents a Sha1 hash object in memory.
#[derive(Clone)]
pub struct Sha1 {
    state: Sha1State,
    blocks: Blocks,
    len: u64,
}

struct Blocks {
    len: u32,
    block: [u8; 64],
}

#[derive(Copy, Clone)]
struct Sha1State {
    state: [u32; 5],
}

/// Digest generated from a `Sha1` instance.
///
/// A digest can be formatted to view the digest as a hex string, or the bytes
/// can be extracted for later processing.
pub struct Digest {
    data: Sha1State,
}

const DEFAULT_STATE: Sha1State = Sha1State {
    state: [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0],
};

impl Sha1 {
    /// Creates an fresh sha1 hash object.
    pub fn new() -> Sha1 {
        Sha1 {
            state: DEFAULT_STATE,
            len: 0,
            blocks: Blocks {
                len: 0,
                block: [0; 64],
            },
        }
    }

    /// Resets the hash object to it's initial state.
    pub fn reset(&mut self) {
        self.state = DEFAULT_STATE;
        self.len = 0;
        self.blocks.len = 0;
    }

    /// Update hash with input data.
    pub fn update(&mut self, data: &[u8]) {
        let len = &mut self.len;
        let state = &mut self.state;
        self.blocks.input(data, |chunk| {
            *len += 64;
            state.process(chunk);
        })
    }

    /// Retrieve digest result.
    pub fn digest(&self) -> Digest {
        let mut state = self.state;
        let bits = (self.len + (self.blocks.len as u64)) * 8;
        let extra = [
            (bits >> 56) as u8,
            (bits >> 48) as u8,
            (bits >> 40) as u8,
            (bits >> 32) as u8,
            (bits >> 24) as u8,
            (bits >> 16) as u8,
            (bits >>  8) as u8,
            (bits >>  0) as u8,
        ];
        let mut last = [0; 128];
        let blocklen = self.blocks.len as usize;
        last[..blocklen].clone_from_slice(&self.blocks.block[..blocklen]);
        last[blocklen] = 0x80;

        if blocklen < 56 {
            last[56..64].clone_from_slice(&extra);
            state.process(&last[0..64]);
        } else {
            last[120..128].clone_from_slice(&extra);
            state.process(&last[0..64]);
            state.process(&last[64..128]);
        }

        Digest { data: state }
    }
}

impl Digest {
    /// Returns the 160 bit (20 byte) digest as a byte array.
    pub fn bytes(&self) -> [u8; 20] {
        [
            (self.data.state[0] >> 24) as u8,
            (self.data.state[0] >> 16) as u8,
            (self.data.state[0] >>  8) as u8,
            (self.data.state[0] >>  0) as u8,
            (self.data.state[1] >> 24) as u8,
            (self.data.state[1] >> 16) as u8,
            (self.data.state[1] >>  8) as u8,
            (self.data.state[1] >>  0) as u8,
            (self.data.state[2] >> 24) as u8,
            (self.data.state[2] >> 16) as u8,
            (self.data.state[2] >>  8) as u8,
            (self.data.state[2] >>  0) as u8,
            (self.data.state[3] >> 24) as u8,
            (self.data.state[3] >> 16) as u8,
            (self.data.state[3] >>  8) as u8,
            (self.data.state[3] >>  0) as u8,
            (self.data.state[4] >> 24) as u8,
            (self.data.state[4] >> 16) as u8,
            (self.data.state[4] >>  8) as u8,
            (self.data.state[4] >>  0) as u8,
        ]
    }
}

impl Blocks {
    fn input<F>(&mut self, mut input: &[u8], mut f: F) where F: FnMut(&[u8]) {
        if self.len > 0 {
            let len = self.len as usize;
            let amt = cmp::min(input.len(), self.block.len() - len);
            self.block[len..len + amt].clone_from_slice(&input[..amt]);
            if len + amt == self.block.len() {
                f(&self.block);
                self.len = 0;
                input = &input[amt..];
            } else {
                self.len += amt as u32;
                return
            }
        }
        assert_eq!(self.len, 0);
        for chunk in input.chunks(64) {
            if chunk.len() == 64 {
                f(chunk)
            } else {
                self.block[..chunk.len()].clone_from_slice(chunk);
                self.len = chunk.len() as u32;
            }
        }
    }
}

impl Sha1State {
    fn process(&mut self, block: &[u8]) {
        let mut words = [0u32; 80];
        for (i, chunk) in block.chunks(4).enumerate() {
            words[i] = (chunk[3] as u32) |
                       ((chunk[2] as u32) << 8) |
                       ((chunk[1] as u32) << 16) |
                       ((chunk[0] as u32) << 24);
        }

        fn ff(b: u32, c: u32, d: u32) -> u32 { d ^ (b & (c ^ d)) }
        fn gg(b: u32, c: u32, d: u32) -> u32 { b ^ c ^ d }
        fn hh(b: u32, c: u32, d: u32) -> u32 { (b & c) | (d & (b | c)) }
        fn ii(b: u32, c: u32, d: u32) -> u32 { b ^ c ^ d }

        for i in 16..80 {
            let n = words[i - 3] ^ words[i - 8] ^ words[i - 14] ^ words[i - 16];
            words[i] = n.rotate_left(1);
        }

        let mut a = self.state[0];
        let mut b = self.state[1];
        let mut c = self.state[2];
        let mut d = self.state[3];
        let mut e = self.state[4];

        for i in 0..80 {
            let (f, k) = match i {
                0 ... 19 => (ff(b, c, d), 0x5a827999),
                20 ... 39 => (gg(b, c, d), 0x6ed9eba1),
                40 ... 59 => (hh(b, c, d), 0x8f1bbcdc),
                60 ... 79 => (ii(b, c, d), 0xca62c1d6),
                _ => (0, 0),
            };

            let tmp = a.rotate_left(5)
                       .wrapping_add(f)
                       .wrapping_add(e)
                       .wrapping_add(k)
                       .wrapping_add(words[i]);
            e = d;
            d = c;
            c = b.rotate_left(30);
            b = a;
            a = tmp;
        }

        self.state[0] = self.state[0].wrapping_add(a);
        self.state[1] = self.state[1].wrapping_add(b);
        self.state[2] = self.state[2].wrapping_add(c);
        self.state[3] = self.state[3].wrapping_add(d);
        self.state[4] = self.state[4].wrapping_add(e);
    }
}

impl Clone for Blocks {
    fn clone(&self) -> Blocks {
        Blocks { ..*self }
    }
}

impl fmt::Display for Digest {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for byte in self.data.state.iter() {
            try!(write!(f, "{:08x}", byte));
        }
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    extern crate std;
    extern crate rand;
    extern crate openssl;

    use self::std::prelude::v1::*;
    use self::std::io::Write;

    use Sha1;

    #[test]
    fn test_simple() {
        let mut m = Sha1::new();

        let tests = [
            ("The quick brown fox jumps over the lazy dog",
             "2fd4e1c67a2d28fced849ee1bb76e7391b93eb12"),
            ("The quick brown fox jumps over the lazy cog",
             "de9f2c7fd25e1b3afad3e85a0bd17d9b100db4b3"),
            ("", "da39a3ee5e6b4b0d3255bfef95601890afd80709"),
            ("testing\n", "9801739daae44ec5293d4e1f53d3f4d2d426d91c"),
            ("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
             "025ecbd5d70f8fb3c5457cd96bab13fda305dc59"),
            ("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
             "4300320394f7ee239bcdce7d3b8bcee173a0cd5c"),
            ("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
             "cef734ba81a024479e09eb5a75b6ddae62e6abf1"),
        ];

        for &(s, ref h) in tests.iter() {
            let data = s.as_bytes();

            m.reset();
            m.update(data);
            let hh = m.digest().to_string();

            assert_eq!(hh.len(), h.len());
            assert_eq!(hh, *h);
        }
    }

    #[test]
    fn test_multiple_updates() {
        let mut m = Sha1::new();

        m.reset();
        m.update("The quick brown ".as_bytes());
        m.update("fox jumps over ".as_bytes());
        m.update("the lazy dog".as_bytes());
        let hh = m.digest().to_string();


        let h = "2fd4e1c67a2d28fced849ee1bb76e7391b93eb12";
        assert_eq!(hh.len(), h.len());
        assert_eq!(hh, &*h);
    }

    #[test]
    fn test_sha1_loop() {
        let mut m = Sha1::new();
        let s = "The quick brown fox jumps over the lazy dog.";
        let n = 1000u64;

        for _ in 0..3 {
            m.reset();
            for _ in 0..n {
                m.update(s.as_bytes());
            }
            assert_eq!(m.digest().to_string(),
                       "7ca27655f67fceaa78ed2e645a81c7f1d6e249d2");
        }
    }

    #[test]
    fn spray_and_pray() {
        use self::rand::Rng;

        let mut rng = rand::thread_rng();
        let mut m = Sha1::new();
        let mut bytes = [0; 512];

        for _ in 0..20 {
            let ty = openssl::crypto::hash::Type::SHA1;
            let mut r = openssl::crypto::hash::Hasher::new(ty);
            m.reset();
            for _ in 0..50 {
                let len = rng.gen::<usize>() % bytes.len();
                rng.fill_bytes(&mut bytes[..len]);
                m.update(&bytes[..len]);
                r.write(&bytes[..len]).unwrap();
            }
            assert_eq!(r.finish(), m.digest().bytes());
        }
    }
}