1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
//! A platform agnostic Rust driver for the Sensirion SGP30 gas sensor, based
//! on the [`embedded-hal`](https://github.com/japaric/embedded-hal) traits.
//!
//! ## The Device
//!
//! The Sensirion SGP30 is a low-power gas sensor for indoor air quality
//! applications with good long-term stability. It has an I²C interface with TVOC
//! (*Total Volatile Organic Compounds*) and CO₂ equivalent signals.
//!
//! - [Datasheet](https://www.sensirion.com/file/datasheet_sgp30)
//! - [Product Page](https://www.sensirion.com/sgp)
//!
//! ## Usage
//!
//! ### Instantiating
//!
//! Import this crate and an `embedded_hal` implementation, then instantiate
//! the device:
//!
//! ```no_run
//! use linux_embedded_hal as hal;
//!
//! use hal::{Delay, I2cdev};
//! use sgp30::Sgp30;
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let address = 0x58;
//! let mut sgp = Sgp30::new(dev, address, Delay);
//! # }
//! ```
//!
//! ### Fetching Device Information
//!
//! You can fetch the serial number of your sensor as well as the [feature
//! set](struct.FeatureSet.html):
//!
//! ```no_run
//! # use linux_embedded_hal as hal;
//! # use hal::{Delay, I2cdev};
//! # use sgp30::Sgp30;
//! use sgp30::FeatureSet;
//!
//! # fn main() {
//! # let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! # let mut sgp = Sgp30::new(dev, 0x58, Delay);
//! let serial_number: [u8; 6] = sgp.serial().unwrap();
//! let feature_set: FeatureSet = sgp.get_feature_set().unwrap();
//! # }
//! ```
//!
//! ### Doing Measurements
//!
//! Before you do any measurements, you need to initialize the sensor.
//!
//! ```no_run
//! # use linux_embedded_hal as hal;
//! # use hal::{Delay, I2cdev};
//! # use sgp30::Sgp30;
//! # fn main() {
//! # let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! # let mut sgp = Sgp30::new(dev, 0x58, Delay);
//! sgp.init().unwrap();
//! # }
//! ```
//!
//! The SGP30 uses a dynamic baseline compensation algorithm and on-chip
//! calibration parameters to provide two complementary air quality signals.
//! Calling this method starts the air quality measurement. **After
//! initializing the measurement, the `measure()` method must be called in
//! regular intervals of 1 second** to ensure proper operation of the dynamic
//! baseline compensation algorithm. It is the responsibility of the user of
//! this driver to ensure that these periodic measurements are being done!
//!
//! ```no_run
//! # use linux_embedded_hal as hal;
//! # use hal::I2cdev;
//! # use sgp30::Sgp30;
//! use embedded_hal::blocking::delay::DelayMs;
//! use hal::Delay;
//! use sgp30::Measurement;
//!
//! # fn main() {
//! # let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! # let mut sgp = Sgp30::new(dev, 0x58, Delay);
//! # sgp.init().unwrap();
//! loop {
//!     let measurement: Measurement = sgp.measure().unwrap();
//!     println!("CO₂eq parts per million: {}", measurement.co2eq_ppm);
//!     println!("TVOC parts per billion: {}", measurement.tvoc_ppb);
//!     Delay.delay_ms(1000u16 - 12);
//! }
//! # }
//! ```
//!
//! *(Note: In the example we're using a delay of 988 ms because the
//! measurement takes up to 12 ms according to the datasheet. In reality, it
//! would be better to use a timer-based approach instead.)*
//!
//! For the first 15 s after initializing the air quality measurement, the
//! sensor is in an initialization phase during which it returns fixed
//! values of 400 ppm CO₂eq and 0 ppb TVOC. After 15 s (15 measurements)
//! the values should start to change.
//!
//! A new init command has to be sent after every power-up or soft reset.
//!
//! ### Restoring Baseline Values
//!
//! The SGP30 provides the possibility to read and write the values of the
//! baseline correction algorithm. This feature is used to save the baseline in
//! regular intervals on an external non-volatile memory and restore it after a
//! new power-up or soft reset of the sensor.
//!
//! The [`get_baseline()`](struct.Sgp30.html#method.get_baseline) method
//! returns the baseline values for the two air quality signals. After a
//! power-up or soft reset, the baseline of the baseline correction algorithm
//! can be restored by calling [`init()`](struct.Sgp30.html#method.init)
//! followed by [`set_baseline()`](struct.Sgp30.html#method.set_baseline).
//!
//! ```no_run
//! # use linux_embedded_hal as hal;
//! # use hal::{I2cdev, Delay};
//! # use sgp30::Sgp30;
//! use sgp30::Baseline;
//!
//! # fn main() {
//! # let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! # let mut sgp = Sgp30::new(dev, 0x58, Delay);
//! # sgp.init().unwrap();
//! let baseline: Baseline = sgp.get_baseline().unwrap();
//! // …
//! sgp.init().unwrap();
//! sgp.set_baseline(&baseline).unwrap();
//! # }
//! ```
//!
//! ### Humidity Compensation
//!
//! The SGP30 features an on-chip humidity compensation for the air quality
//! signals (CO₂eq and TVOC) and sensor raw signals (H2 and Ethanol). To use
//! the on-chip humidity compensation, an absolute humidity value from an
//! external humidity sensor is required.
//!
//! ```no_run
//! # use linux_embedded_hal as hal;
//! # use hal::{I2cdev, Delay};
//! # use sgp30::Sgp30;
//! use sgp30::Humidity;
//!
//! # fn main() {
//! # let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! # let mut sgp = Sgp30::new(dev, 0x58, Delay);
//! // This value must be obtained from a separate humidity sensor
//! let humidity = Humidity::from_f32(23.42).unwrap();
//!
//! sgp.init().unwrap();
//! sgp.set_humidity(Some(&humidity)).unwrap();
//! # }
//! ```
//!
//! After setting a new humidity value, this value will be used by the
//! on-chip humidity compensation algorithm until a new humidity value is
//! set. Restarting the sensor (power-on or soft reset) or calling the
//! function with a `None` value sets the humidity value used for
//! compensation to its default value (11.57 g/m³) until a new humidity
//! value is sent.

#![deny(unsafe_code)]
#![deny(missing_docs)]
#![cfg_attr(not(test), no_std)]

use byteorder::{BigEndian, ByteOrder};
use embedded_hal as hal;
use sensirion_i2c::{crc8, i2c};

use crate::hal::blocking::{
    delay::{DelayMs, DelayUs},
    i2c::{Read, Write, WriteRead},
};

mod types;

pub use crate::types::{Baseline, FeatureSet, Humidity, Measurement, ProductType, RawSignals};

/// All possible errors in this crate
#[derive(Debug)]
pub enum Error<E> {
    /// I²C bus error
    I2c(E),
    /// CRC checksum validation failed
    Crc,
    /// User tried to measure the air quality without starting the
    /// initialization phase.
    NotInitialized,
}

impl<E, I2cWrite, I2cRead> From<i2c::Error<I2cWrite, I2cRead>> for Error<E>
where
    I2cWrite: Write<Error = E>,
    I2cRead: Read<Error = E>,
{
    fn from(err: i2c::Error<I2cWrite, I2cRead>) -> Self {
        match err {
            i2c::Error::Crc => Error::Crc,
            i2c::Error::I2cWrite(e) => Error::I2c(e),
            i2c::Error::I2cRead(e) => Error::I2c(e),
        }
    }
}

/// I²C commands sent to the sensor.
#[derive(Debug, Copy, Clone)]
enum Command {
    /// Return the serial number.
    GetSerial,
    /// Run an on-chip self-test.
    SelfTest,
    /// Initialize air quality measurements.
    InitAirQuality,
    /// Get a current air quality measurement.
    MeasureAirQuality,
    /// Measure raw signals.
    MeasureRawSignals,
    /// Return the baseline value.
    GetBaseline,
    /// Set the baseline value.
    SetBaseline,
    /// Set the current absolute humidity.
    SetHumidity,
    /// Set the feature set.
    GetFeatureSet,
}

impl Command {
    fn as_bytes(self) -> [u8; 2] {
        match self {
            Command::GetSerial => [0x36, 0x82],
            Command::SelfTest => [0x20, 0x32],
            Command::InitAirQuality => [0x20, 0x03],
            Command::MeasureAirQuality => [0x20, 0x08],
            Command::MeasureRawSignals => [0x20, 0x50],
            Command::GetBaseline => [0x20, 0x15],
            Command::SetBaseline => [0x20, 0x1E],
            Command::SetHumidity => [0x20, 0x61],
            Command::GetFeatureSet => [0x20, 0x2F],
        }
    }
}

/// Driver for the SGP30
#[derive(Debug, Default)]
pub struct Sgp30<I2C, D> {
    /// The concrete I²C device implementation.
    i2c: I2C,
    /// The I²C device address.
    address: u8,
    /// The concrete Delay implementation.
    delay: D,
    /// Whether the air quality measurement was initialized.
    initialized: bool,
}

impl<I2C, D, E> Sgp30<I2C, D>
where
    I2C: Read<Error = E> + Write<Error = E> + WriteRead<Error = E>,
    D: DelayUs<u16> + DelayMs<u16>,
{
    /// Create a new instance of the SGP30 driver.
    pub fn new(i2c: I2C, address: u8, delay: D) -> Self {
        Sgp30 {
            i2c,
            address,
            delay,
            initialized: false,
        }
    }

    /// Destroy driver instance, return I²C bus instance.
    pub fn destroy(self) -> I2C {
        self.i2c
    }

    /// Write an I²C command to the sensor.
    fn send_command(&mut self, command: Command) -> Result<(), Error<E>> {
        self.i2c
            .write(self.address, &command.as_bytes())
            .map_err(Error::I2c)
    }

    /// Write an I²C command and data to the sensor.
    ///
    /// The data slice must have a length of 2 or 4.
    ///
    /// CRC checksums will automatically be added to the data.
    fn send_command_and_data(&mut self, command: Command, data: &[u8]) -> Result<(), Error<E>> {
        assert!(data.len() == 2 || data.len() == 4);
        let mut buf = [0; 2 /* command */ + 6 /* max length of data + crc */];
        buf[0..2].copy_from_slice(&command.as_bytes());
        buf[2..4].copy_from_slice(&data[0..2]);
        buf[4] = crc8::calculate(&data[0..2]);
        if data.len() > 2 {
            buf[5..7].copy_from_slice(&data[2..4]);
            buf[7] = crc8::calculate(&data[2..4]);
        }
        let payload = if data.len() > 2 {
            &buf[0..8]
        } else {
            &buf[0..5]
        };
        self.i2c.write(self.address, payload).map_err(Error::I2c)
    }

    /// Return the 48 bit serial number of the SGP30.
    pub fn serial(&mut self) -> Result<[u8; 6], Error<E>> {
        // Request serial number
        self.send_command(Command::GetSerial)?;

        // Recommended wait time according to datasheet (6.5)
        self.delay.delay_us(500);

        // Read serial number
        let mut buf = [0; 9];
        i2c::read_words_with_crc(&mut self.i2c, self.address, &mut buf)?;

        Ok([buf[0], buf[1], buf[3], buf[4], buf[6], buf[7]])
    }

    /// Run an on-chip self-test. Return a boolean indicating whether the test succeeded.
    pub fn selftest(&mut self) -> Result<bool, Error<E>> {
        // Start self test
        self.send_command(Command::SelfTest)?;

        // Max duration according to datasheet (Table 10)
        self.delay.delay_ms(220);

        // Read result
        let mut buf = [0; 3];
        i2c::read_words_with_crc(&mut self.i2c, self.address, &mut buf)?;

        // Compare with self-test success pattern
        Ok(buf[0..2] == [0xd4, 0x00])
    }

    /// Initialize the air quality measurement.
    ///
    /// The SGP30 uses a dynamic baseline compensation algorithm and on-chip
    /// calibration parameters to provide two complementary air quality
    /// signals.
    ///
    /// Calling this method starts the air quality measurement. After
    /// initializing the measurement, the `measure()` method must be called in
    /// regular intervals of 1 s to ensure proper operation of the dynamic
    /// baseline compensation algorithm. It is the responsibility of the user
    /// of this driver to ensure that these periodic measurements are being
    /// done.
    ///
    /// For the first 15 s after initializing the air quality measurement, the
    /// sensor is in an initialization phase during which it returns fixed
    /// values of 400 ppm CO₂eq and 0 ppb TVOC. After 15 s (15 measurements)
    /// the values should start to change.
    ///
    /// A new init command has to be sent after every power-up or soft reset.
    pub fn init(&mut self) -> Result<(), Error<E>> {
        if self.initialized {
            // Already initialized
            return Ok(());
        }
        self.force_init()
    }

    /// Like [`init()`](struct.Sgp30.html#method.init), but without checking
    /// whether the sensor is already initialized.
    ///
    /// This might be necessary after a sensor soft or hard reset.
    pub fn force_init(&mut self) -> Result<(), Error<E>> {
        // Send command to sensor
        self.send_command(Command::InitAirQuality)?;

        // Max duration according to datasheet (Table 10)
        self.delay.delay_ms(10);

        self.initialized = true;
        Ok(())
    }

    /// Get an air quality measurement.
    ///
    /// Before calling this method, the air quality measurements must have been
    /// initialized using the [`init()`](struct.Sgp30.html#method.init) method.
    /// Otherwise an [`Error::NotInitialized`](enum.Error.html#variant.NotInitialized)
    /// will be returned.
    ///
    /// Once the measurements have been initialized, the
    /// [`measure()`](struct.Sgp30.html#method.measure) method must be called
    /// in regular intervals of 1 s to ensure proper operation of the dynamic
    /// baseline compensation algorithm. It is the responsibility of the user
    /// of this driver to ensure that these periodic measurements are being
    /// done.
    ///
    /// For the first 15 s after initializing the air quality measurement, the
    /// sensor is in an initialization phase during which it returns fixed
    /// values of 400 ppm CO₂eq and 0 ppb TVOC. After 15 s (15 measurements)
    /// the values should start to change.
    pub fn measure(&mut self) -> Result<Measurement, Error<E>> {
        if !self.initialized {
            // Measurements weren't initialized
            return Err(Error::NotInitialized);
        }

        // Send command to sensor
        self.send_command(Command::MeasureAirQuality)?;

        // Max duration according to datasheet (Table 10)
        self.delay.delay_ms(12);

        // Read result
        let mut buf = [0; 6];
        i2c::read_words_with_crc(&mut self.i2c, self.address, &mut buf)?;
        let co2eq_ppm = (u16::from(buf[0]) << 8) | u16::from(buf[1]);
        let tvoc_ppb = (u16::from(buf[3]) << 8) | u16::from(buf[4]);

        Ok(Measurement {
            co2eq_ppm,
            tvoc_ppb,
        })
    }

    /// Return sensor raw signals.
    ///
    /// This command is intended for part verification and testing purposes. It
    /// returns the raw signals which are used as inputs for the on-chip
    /// calibration and baseline compensation algorithm. The command performs a
    /// measurement to which the sensor responds with the two signals for H2
    /// and Ethanol.
    pub fn measure_raw_signals(&mut self) -> Result<RawSignals, Error<E>> {
        if !self.initialized {
            // Measurements weren't initialized
            return Err(Error::NotInitialized);
        }

        // Send command to sensor
        self.send_command(Command::MeasureRawSignals)?;

        // Max duration according to datasheet (Table 10)
        self.delay.delay_ms(25);

        // Read result
        let mut buf = [0; 6];
        i2c::read_words_with_crc(&mut self.i2c, self.address, &mut buf)?;
        let h2_signal = (u16::from(buf[0]) << 8) | u16::from(buf[1]);
        let ethanol_signal = (u16::from(buf[3]) << 8) | u16::from(buf[4]);

        Ok(RawSignals {
            h2: h2_signal,
            ethanol: ethanol_signal,
        })
    }

    /// Return the baseline values of the baseline correction algorithm.
    ///
    /// The SGP30 provides the possibility to read and write the baseline
    /// values of the baseline correction algorithm. This feature is used to
    /// save the baseline in regular intervals on an external non-volatile
    /// memory and restore it after a new power-up or soft reset of the sensor.
    ///
    /// This function returns the baseline values for the two air quality
    /// signals. These two values should be stored on an external memory. After
    /// a power-up or soft reset, the baseline of the baseline correction
    /// algorithm can be restored by calling
    /// [`init()`](struct.Sgp30.html#method.init) followed by
    /// [`set_baseline()`](struct.Sgp30.html#method.set_baseline).
    pub fn get_baseline(&mut self) -> Result<Baseline, Error<E>> {
        // Send command to sensor
        self.send_command(Command::GetBaseline)?;

        // Max duration according to datasheet (Table 10)
        self.delay.delay_ms(10);

        // Read result
        let mut buf = [0; 6];
        i2c::read_words_with_crc(&mut self.i2c, self.address, &mut buf)?;
        let co2eq_baseline = (u16::from(buf[0]) << 8) | u16::from(buf[1]);
        let tvoc_baseline = (u16::from(buf[3]) << 8) | u16::from(buf[4]);

        Ok(Baseline {
            co2eq: co2eq_baseline,
            tvoc: tvoc_baseline,
        })
    }

    /// Set the baseline values for the baseline correction algorithm.
    ///
    /// Before calling this method, the air quality measurements must have been
    /// initialized using the [`init()`](struct.Sgp30.html#method.init) method.
    /// Otherwise an [`Error::NotInitialized`](enum.Error.html#variant.NotInitialized)
    /// will be returned.
    ///
    /// The SGP30 provides the possibility to read and write the baseline
    /// values of the baseline correction algorithm. This feature is used to
    /// save the baseline in regular intervals on an external non-volatile
    /// memory and restore it after a new power-up or soft reset of the sensor.
    ///
    /// This function sets the baseline values for the two air quality
    /// signals.
    pub fn set_baseline(&mut self, baseline: &Baseline) -> Result<(), Error<E>> {
        if !self.initialized {
            // Measurements weren't initialized
            return Err(Error::NotInitialized);
        }

        // Send command and data to sensor
        // Note that the order of the two parameters is inverted when writing
        // compared to when reading.
        let mut buf = [0; 4];
        BigEndian::write_u16(&mut buf[0..2], baseline.tvoc);
        BigEndian::write_u16(&mut buf[2..4], baseline.co2eq);
        self.send_command_and_data(Command::SetBaseline, &buf)?;

        // Max duration according to datasheet (Table 10)
        self.delay.delay_ms(10);

        Ok(())
    }

    /// Set the humidity value for the baseline correction algorithm.
    ///
    /// The SGP30 features an on-chip humidity compensation for the air quality
    /// signals (CO₂eq and TVOC) and sensor raw signals (H2 and Ethanol). To
    /// use the on-chip humidity compensation, an absolute humidity value from
    /// an external humidity sensor is required.
    ///
    /// After setting a new humidity value, this value will be used by the
    /// on-chip humidity compensation algorithm until a new humidity value is
    /// set. Restarting the sensor (power-on or soft reset) or calling the
    /// function with a `None` value sets the humidity value used for
    /// compensation to its default value (11.57 g/m³) until a new humidity
    /// value is sent.
    ///
    /// Before calling this method, the air quality measurements must have been
    /// initialized using the [`init()`](struct.Sgp30.html#method.init) method.
    /// Otherwise an [`Error::NotInitialized`](enum.Error.html#variant.NotInitialized)
    /// will be returned.
    pub fn set_humidity(&mut self, humidity: Option<&Humidity>) -> Result<(), Error<E>> {
        if !self.initialized {
            // Measurements weren't initialized
            return Err(Error::NotInitialized);
        }

        // Send command and data to sensor
        let buf = match humidity {
            Some(humi) => humi.as_bytes(),
            None => [0, 0],
        };
        self.send_command_and_data(Command::SetHumidity, &buf)?;

        // Max duration according to datasheet (Table 10)
        self.delay.delay_ms(10);

        Ok(())
    }

    /// Get the feature set.
    ///
    /// The SGP30 features a versioning system for the available set of
    /// measurement commands and on-chip algorithms. This so called feature set
    /// version number can be read out with this method.
    pub fn get_feature_set(&mut self) -> Result<FeatureSet, Error<E>> {
        // Send command to sensor
        self.send_command(Command::GetFeatureSet)?;

        // Max duration according to datasheet (Table 10)
        self.delay.delay_ms(2);

        // Read result
        let mut buf = [0; 3];
        i2c::read_words_with_crc(&mut self.i2c, self.address, &mut buf)?;

        Ok(FeatureSet::parse(buf[0], buf[1]))
    }
}

#[cfg(test)]
mod tests {
    use embedded_hal_mock as hal;

    use self::hal::eh0::{
        delay::NoopDelay,
        i2c::{Mock as I2cMock, Transaction},
    };
    use super::*;

    /// Test the `serial` function
    #[test]
    fn serial() {
        let expectations = [
            Transaction::write(0x58, Command::GetSerial.as_bytes()[..].into()),
            Transaction::read(0x58, vec![0, 0, 129, 0, 100, 254, 204, 130, 135]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sgp = Sgp30::new(mock, 0x58, NoopDelay);
        let serial = sgp.serial().unwrap();
        assert_eq!(serial, [0, 0, 0, 100, 204, 130]);
        sgp.destroy().done();
    }

    /// Test the `selftest` function
    #[test]
    fn selftest_ok() {
        let expectations = [
            Transaction::write(0x58, Command::SelfTest.as_bytes()[..].into()),
            Transaction::read(0x58, vec![0xD4, 0x00, 0xC6]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sgp = Sgp30::new(mock, 0x58, NoopDelay);
        assert!(sgp.selftest().unwrap());
        sgp.destroy().done();
    }

    /// Test the `selftest` function
    #[test]
    fn selftest_fail() {
        let expectations = [
            Transaction::write(0x58, Command::SelfTest.as_bytes()[..].into()),
            Transaction::read(0x58, vec![0x12, 0x34, 0x37]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sgp = Sgp30::new(mock, 0x58, NoopDelay);
        assert!(!sgp.selftest().unwrap());
        sgp.destroy().done();
    }

    /// Test the `measure` function: Require initialization
    #[test]
    fn measure_initialization_required() {
        let mock = I2cMock::new(&[]);
        let mut sgp = Sgp30::new(mock, 0x58, NoopDelay);
        match sgp.measure() {
            Err(Error::NotInitialized) => {}
            Ok(_) => panic!("Error::NotInitialized not returned"),
            Err(_) => panic!("Wrong error returned"),
        }
        sgp.destroy().done();
    }

    /// Test the `measure` function: Calculation of return values
    #[test]
    fn measure_success() {
        let expectations = [
            Transaction::write(0x58, Command::InitAirQuality.as_bytes()[..].into()),
            Transaction::write(0x58, Command::MeasureAirQuality.as_bytes()[..].into()),
            Transaction::read(0x58, vec![0x12, 0x34, 0x37, 0xD4, 0x02, 0xA4]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sgp = Sgp30::new(mock, 0x58, NoopDelay);
        sgp.init().unwrap();
        let measurements = sgp.measure().unwrap();
        assert_eq!(measurements.co2eq_ppm, 4_660);
        assert_eq!(measurements.tvoc_ppb, 54_274);
        sgp.destroy().done();
    }

    /// Test the `get_baseline` function
    #[test]
    fn get_baseline() {
        let expectations = [
            Transaction::write(0x58, Command::InitAirQuality.as_bytes()[..].into()),
            Transaction::write(0x58, Command::GetBaseline.as_bytes()[..].into()),
            Transaction::read(0x58, vec![0x12, 0x34, 0x37, 0xD4, 0x02, 0xA4]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sgp = Sgp30::new(mock, 0x58, NoopDelay);
        sgp.init().unwrap();
        let baseline = sgp.get_baseline().unwrap();
        assert_eq!(baseline.co2eq, 4_660);
        assert_eq!(baseline.tvoc, 54_274);
        sgp.destroy().done();
    }

    /// Test the `set_baseline` function
    #[test]
    fn set_baseline() {
        #[rustfmt::skip]
        let expectations = [
            Transaction::write(0x58, Command::InitAirQuality.as_bytes()[..].into()),
            Transaction::write(0x58, vec![
                /* command: */ 0x20, 0x1E,
                /* data + crc8: */ 0x56, 0x78, 0x7D, 0x12, 0x34, 0x37,
            ]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sgp = Sgp30::new(mock, 0x58, NoopDelay);
        sgp.init().unwrap();
        let baseline = Baseline {
            co2eq: 0x1234,
            tvoc: 0x5678,
        };
        sgp.set_baseline(&baseline).unwrap();
        sgp.destroy().done();
    }

    /// Test the `set_humidity` function
    #[test]
    fn set_humidity() {
        #[rustfmt::skip]
        let expectations = [
            Transaction::write(0x58, Command::InitAirQuality.as_bytes()[..].into()),
            Transaction::write(0x58, vec![
                /* command: */ 0x20, 0x61,
                /* data + crc8: */ 0x0F, 0x80, 0x62,
            ]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sgp = Sgp30::new(mock, 0x58, NoopDelay);
        sgp.init().unwrap();
        let humidity = Humidity::from_f32(15.5).unwrap();
        sgp.set_humidity(Some(&humidity)).unwrap();
        sgp.destroy().done();
    }

    /// Test the `set_humidity` function with a None value
    #[test]
    fn set_humidity_none() {
        #[rustfmt::skip]
        let expectations = [
            Transaction::write(0x58, Command::InitAirQuality.as_bytes()[..].into()),
            Transaction::write(0x58, vec![
                /* command: */ 0x20, 0x61,
                /* data + crc8: */ 0x00, 0x00, 0x81,
            ]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sgp = Sgp30::new(mock, 0x58, NoopDelay);
        sgp.init().unwrap();
        sgp.set_humidity(None).unwrap();
        sgp.destroy().done();
    }

    /// Test the `get_feature_set` function.
    #[test]
    fn get_feature_set() {
        let expectations = [
            Transaction::write(0x58, Command::InitAirQuality.as_bytes()[..].into()),
            Transaction::write(0x58, Command::GetFeatureSet.as_bytes()[..].into()),
            Transaction::read(0x58, vec![0x00, 0x42, 0xDE]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sgp = Sgp30::new(mock, 0x58, NoopDelay);
        sgp.init().unwrap();
        let feature_set = sgp.get_feature_set().unwrap();
        assert_eq!(feature_set.product_type, ProductType::Sgp30);
        assert_eq!(feature_set.product_version, 0x42);
        sgp.destroy().done();
    }

    /// Test the `measure_raw_signals` function.
    #[test]
    fn measure_raw_signals() {
        let expectations = [
            Transaction::write(0x58, Command::InitAirQuality.as_bytes()[..].into()),
            Transaction::write(0x58, Command::MeasureRawSignals.as_bytes()[..].into()),
            Transaction::read(0x58, vec![0x12, 0x34, 0x37, 0x56, 0x78, 0x7D]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sgp = Sgp30::new(mock, 0x58, NoopDelay);
        sgp.init().unwrap();
        let signals = sgp.measure_raw_signals().unwrap();
        assert_eq!(signals.h2, (0x12 << 8) + 0x34);
        assert_eq!(signals.ethanol, (0x56 << 8) + 0x78);
        sgp.destroy().done();
    }
}