Struct sfml::graphics::Texture[][src]

#[repr(C)]pub struct Texture { /* fields omitted */ }

Image living on the graphics card that can be used for drawing.

Texture stores pixels that can be drawn, with a sprite for example.

A texture lives in the graphics card memory, therefore it is very fast to draw a texture to a render target, or copy a render target to a texture (the graphics card can access both directly).

Being stored in the graphics card memory has some drawbacks. A texture cannot be manipulated as freely as a Image, you need to prepare the pixels first and then upload them to the texture in a single operation (see the various update methods below).

Texture makes it easy to convert from/to Image, but keep in mind that these calls require transfers between the graphics card and the central memory, therefore they are slow operations.

A texture can be loaded from an image, but also directly from a file/memory/stream. The necessary shortcuts are defined so that you don’t need an image first for the most common cases. However, if you want to perform some modifications on the pixels before creating the final texture, you can load your file to a Image, do whatever you need with the pixels, and then call Texture::from_image.

Since they live in the graphics card memory, the pixels of a texture cannot be accessed without a slow copy first. And they cannot be accessed individually. Therefore, if you need to read the texture’s pixels (like for pixel-perfect collisions), it is recommended to store the collision information separately, for example in an array of booleans.

Like Image, Texture can handle a unique internal representation of pixels, which is RGBA 32 bits. This means that a pixel must be composed of 8 bits red, green, blue and alpha channels – just like a Color.

Implementations

impl Texture[src]

#[must_use]pub fn size(&self) -> Vector2u[src]

Return the size of the texture

Return the Size in pixels

#[must_use]pub fn is_smooth(&self) -> bool[src]

Tell whether the smooth filter is enabled or not for a texture

Return true if smoothing is enabled, false if it is disabled

#[must_use]pub fn is_repeated(&self) -> bool[src]

Tell whether a texture is repeated or not

Return frue if repeat mode is enabled, false if it is disabled

#[must_use]pub fn copy_to_image(&self) -> Option<Image>[src]

Copy a texture’s pixels to an image

Return an image containing the texture’s pixels

#[must_use]pub fn is_srgb(&self) -> bool[src]

Tell whether the texture source is converted from sRGB or not.

#[must_use]pub fn native_handle(&self) -> u32[src]

Get the underlying OpenGL handle of the texture.

You shouldn’t need to use this function, unless you have very specific stuff to implement that SFML doesn’t support, or implement a temporary workaround until a bug is fixed.

pub fn bind(&self)[src]

Bind a texture for rendering

This function is not part of the graphics API, it mustn’t be used when drawing SFML entities. It must be used only if you mix Texture with OpenGL code.

#[must_use]pub fn new(width: u32, height: u32) -> Option<SfBox<Texture>>[src]

Create a new texture

Returns None on failure.

#[must_use]pub fn from_memory(mem: &[u8], area: &IntRect) -> Option<SfBox<Texture>>[src]

Create a new texture from memory

The area argument can be used to load only a sub-rectangle of the whole image. If you want the entire image then use a default IntRect. If the area rectangle crosses the bounds of the image, it is adjusted to fit the image size.

Arguments

  • mem - Pointer to the file data in memory
  • area - Area of the image to load

Returns None on failure.

pub fn from_stream<T: Read + Seek>(
    stream: &mut T,
    area: &mut IntRect
) -> Option<SfBox<Texture>>
[src]

Create a new texture from a stream (a struct implementing Read + Seek)

The area argument can be used to load only a sub-rectangle of the whole image. If you want the entire image then use a default IntRect. If the area rectangle crosses the bounds of the image, it is adjusted to fit the image size.

Arguments

  • stream - Your struct, implementing Read and Seek
  • area - Area of the image to load

Returns None on failure.

#[must_use]pub fn from_file(filename: &str) -> Option<SfBox<Texture>>[src]

Create a new texture from a file

Arguments

  • filename - Path of the image file to load

Returns None on failure.

#[must_use]pub fn from_file_with_rect(
    filename: &str,
    area: &IntRect
) -> Option<SfBox<Texture>>
[src]

Create a new texture from a file with a given area

Arguments

  • filename - Path of the image file to load
  • area - Area of the source image to load

Returns None on failure.

#[must_use]pub fn from_image_with_rect(
    image: &Image,
    area: &IntRect
) -> Option<SfBox<Texture>>
[src]

Create a new texture from an image

Arguments

  • image - Image to upload to the texture
  • area - Area of the source image to load

Returns None on failure.

#[must_use]pub fn from_image(image: &Image) -> Option<SfBox<Texture>>[src]

Create a new texture from an image

Arguments

  • image - Image to upload to the texture

Returns None on failure.

pub fn update_from_window(&mut self, window: &Window, x: u32, y: u32)[src]

Update a texture from the contents of a window

Arguments

  • window - Window to copy to the texture
  • x - X offset in the texture where to copy the source pixels
  • y - Y offset in the texture where to copy the source pixels

pub fn update_from_render_window(
    &mut self,
    render_window: &RenderWindow,
    x: u32,
    y: u32
)
[src]

Update a texture from the contents of a render window

Arguments

  • renderWindow - Render-window to copy to the texture
  • x - X offset in the texture where to copy the source pixels
  • y - Y offset in the texture where to copy the source pixels

pub fn update_from_image(&mut self, image: &Image, x: u32, y: u32)[src]

Update a texture from the contents of an image

Arguments

  • image - Image to copy to the texture
  • x - X offset in the texture where to copy the source pixels
  • y - Y offset in the texture where to copy the source pixels

pub unsafe fn update_from_pixels(
    &mut self,
    pixels: &[u8],
    width: u32,
    height: u32,
    x: u32,
    y: u32
)
[src]

Update a part of the texture from an array of pixels.

The size of the pixel array must match the width and height arguments, and it must contain 32-bits RGBA pixels.

This function does nothing if pixels is null or if the texture was not previously created.

Safety

No additional check is performed on the size of the pixel array or the bounds of the area to update, passing invalid arguments will lead to an undefined behavior.

pub fn set_smooth(&mut self, smooth: bool)[src]

Enable or disable the smooth filter on a texture

Arguments

  • smooth - true to enable smoothing, false to disable it

pub fn set_repeated(&mut self, repeated: bool)[src]

Enable or disable repeating for a texture

epeating is involved when using texture coordinates outside the texture rectangle [0, 0, width, height]. In this case, if repeat mode is enabled, the whole texture will be repeated as many times as needed to reach the coordinate (for example, if the X texture coordinate is 3 * width, the texture will be repeated 3 times). If repeat mode is disabled, the “extra space” will instead be filled with border pixels. Warning: on very old graphics cards, white pixels may appear when the texture is repeated. With such cards, repeat mode can be used reliably only if the texture has power-of-two dimensions (such as 256x128). Repeating is disabled by default.

Arguments

  • repeated - true to repeat the texture, false to disable repeating

#[must_use]pub fn maximum_size() -> u32[src]

Get the maximum texture size allowed

Return the maximum size allowed for textures, in pixels

pub fn set_srgb(&mut self, srgb: bool)[src]

Enable or disable conversion from sRGB.

When providing texture data from an image file or memory, it can either be stored in a linear color space or an sRGB color space. Most digital images account for gamma correction already, so they would need to be “uncorrected” back to linear color space before being processed by the hardware. The hardware can automatically convert it from the sRGB color space to a linear color space when it gets sampled. When the rendered image gets output to the final framebuffer, it gets converted back to sRGB.

After enabling or disabling sRGB conversion, make sure to reload the texture data in order for the setting to take effect.

This option is only useful in conjunction with an sRGB capable framebuffer. This can be requested during window creation.

pub fn generate_mipmap(&mut self) -> bool[src]

Generate a mipmap using the current texture data.

Mipmaps are pre-computed chains of optimized textures. Each level of texture in a mipmap is generated by halving each of the previous level’s dimensions. This is done until the final level has the size of 1x1. The textures generated in this process may make use of more advanced filters which might improve the visual quality of textures when they are applied to objects much smaller than they are. This is known as minification. Because fewer texels (texture elements) have to be sampled from when heavily minified, usage of mipmaps can also improve rendering performance in certain scenarios.

Mipmap generation relies on the necessary OpenGL extension being available. If it is unavailable or generation fails due to another reason, this function will return false. Mipmap data is only valid from the time it is generated until the next time the base level image is modified, at which point this function will have to be called again to regenerate it.

Returns true if mipmap generation was successful, false if unsuccessful.

Trait Implementations

impl Debug for Texture[src]

impl ToOwned for Texture[src]

type Owned = SfBox<Texture>

The resulting type after obtaining ownership.

Auto Trait Implementations

impl RefUnwindSafe for Texture

impl Send for Texture

impl Sync for Texture

impl Unpin for Texture

impl UnwindSafe for Texture

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.