1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
use crate::{
    error::{DexErrorCode, DexResult},
    fees::FeeTier,
};
use arrayref::{array_refs, mut_array_refs};
use bytemuck::{cast, cast_mut, cast_ref, cast_slice, cast_slice_mut, Pod, Zeroable};

use num_enum::{IntoPrimitive, TryFromPrimitive};
use static_assertions::const_assert_eq;
use std::{
    convert::{identity, TryFrom},
    mem::{align_of, size_of},
    num::NonZeroU64,
};

pub type NodeHandle = u32;

#[derive(IntoPrimitive, TryFromPrimitive)]
#[repr(u32)]
enum NodeTag {
    Uninitialized = 0,
    InnerNode = 1,
    LeafNode = 2,
    FreeNode = 3,
    LastFreeNode = 4,
}

#[derive(Copy, Clone)]
#[repr(packed)]
#[allow(dead_code)]
struct InnerNode {
    tag: u32,
    prefix_len: u32,
    key: u128,
    children: [u32; 2],
    _padding: [u64; 5],
}
unsafe impl Zeroable for InnerNode {}
unsafe impl Pod for InnerNode {}

impl InnerNode {
    fn walk_down(&self, search_key: u128) -> (NodeHandle, bool) {
        let crit_bit_mask = (1u128 << 127) >> self.prefix_len;
        let crit_bit = (search_key & crit_bit_mask) != 0;
        (self.children[crit_bit as usize], crit_bit)
    }
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(packed)]
pub struct LeafNode {
    tag: u32,
    owner_slot: u8,
    fee_tier: u8,
    padding: [u8; 2],
    key: u128,
    owner: [u64; 4],
    quantity: u64,
    client_order_id: u64,
}
unsafe impl Zeroable for LeafNode {}
unsafe impl Pod for LeafNode {}

impl LeafNode {
    #[inline]
    pub fn new(
        owner_slot: u8,
        key: u128,
        owner: [u64; 4],
        quantity: u64,
        fee_tier: FeeTier,
        client_order_id: u64,
    ) -> Self {
        LeafNode {
            tag: NodeTag::LeafNode.into(),
            owner_slot,
            fee_tier: fee_tier.into(),
            padding: [0; 2],
            key,
            owner,
            quantity,
            client_order_id,
        }
    }

    #[inline]
    pub fn fee_tier(&self) -> FeeTier {
        FeeTier::try_from_primitive(self.fee_tier).unwrap()
    }

    #[inline]
    pub fn price(&self) -> NonZeroU64 {
        NonZeroU64::new((self.key >> 64) as u64).unwrap()
    }

    #[inline]
    pub fn order_id(&self) -> u128 {
        self.key
    }

    #[inline]
    pub fn quantity(&self) -> u64 {
        self.quantity
    }

    #[inline]
    pub fn set_quantity(&mut self, quantity: u64) {
        self.quantity = quantity;
    }

    #[inline]
    pub fn owner(&self) -> [u64; 4] {
        self.owner
    }

    #[inline]
    pub fn owner_slot(&self) -> u8 {
        self.owner_slot
    }

    #[inline]
    pub fn client_order_id(&self) -> u64 {
        self.client_order_id
    }
}

#[derive(Copy, Clone)]
#[repr(packed)]
#[allow(dead_code)]
struct FreeNode {
    tag: u32,
    next: u32,
    _padding: [u64; 8],
}
unsafe impl Zeroable for FreeNode {}
unsafe impl Pod for FreeNode {}

const fn _const_max(a: usize, b: usize) -> usize {
    let gt = (a > b) as usize;
    gt * a + (1 - gt) * b
}

const _INNER_NODE_SIZE: usize = size_of::<InnerNode>();
const _LEAF_NODE_SIZE: usize = size_of::<LeafNode>();
const _FREE_NODE_SIZE: usize = size_of::<FreeNode>();
const _NODE_SIZE: usize = 72;

const _INNER_NODE_ALIGN: usize = align_of::<InnerNode>();
const _LEAF_NODE_ALIGN: usize = align_of::<LeafNode>();
const _FREE_NODE_ALIGN: usize = align_of::<FreeNode>();
const _NODE_ALIGN: usize = 1;

const_assert_eq!(_NODE_SIZE, _INNER_NODE_SIZE);
const_assert_eq!(_NODE_SIZE, _LEAF_NODE_SIZE);
const_assert_eq!(_NODE_SIZE, _FREE_NODE_SIZE);

const_assert_eq!(_NODE_ALIGN, _INNER_NODE_ALIGN);
const_assert_eq!(_NODE_ALIGN, _LEAF_NODE_ALIGN);
const_assert_eq!(_NODE_ALIGN, _FREE_NODE_ALIGN);

#[derive(Copy, Clone)]
#[repr(packed)]
#[allow(dead_code)]
pub struct AnyNode {
    tag: u32,
    data: [u32; 17],
}
unsafe impl Zeroable for AnyNode {}
unsafe impl Pod for AnyNode {}

enum NodeRef<'a> {
    Inner(&'a InnerNode),
    Leaf(&'a LeafNode),
}

enum NodeRefMut<'a> {
    Inner(&'a mut InnerNode),
    Leaf(&'a mut LeafNode),
}

impl AnyNode {
    fn key(&self) -> Option<u128> {
        match self.case()? {
            NodeRef::Inner(inner) => Some(inner.key),
            NodeRef::Leaf(leaf) => Some(leaf.key),
        }
    }

    #[cfg(test)]
    fn prefix_len(&self) -> u32 {
        match self.case().unwrap() {
            NodeRef::Inner(&InnerNode { prefix_len, .. }) => prefix_len,
            NodeRef::Leaf(_) => 128,
        }
    }

    fn children(&self) -> Option<[u32; 2]> {
        match self.case().unwrap() {
            NodeRef::Inner(&InnerNode { children, .. }) => Some(children),
            NodeRef::Leaf(_) => None,
        }
    }

    fn case(&self) -> Option<NodeRef> {
        match NodeTag::try_from(self.tag) {
            Ok(NodeTag::InnerNode) => Some(NodeRef::Inner(cast_ref(self))),
            Ok(NodeTag::LeafNode) => Some(NodeRef::Leaf(cast_ref(self))),
            _ => None,
        }
    }

    fn case_mut(&mut self) -> Option<NodeRefMut> {
        match NodeTag::try_from(self.tag) {
            Ok(NodeTag::InnerNode) => Some(NodeRefMut::Inner(cast_mut(self))),
            Ok(NodeTag::LeafNode) => Some(NodeRefMut::Leaf(cast_mut(self))),
            _ => None,
        }
    }

    #[inline]
    pub fn as_leaf(&self) -> Option<&LeafNode> {
        match self.case() {
            Some(NodeRef::Leaf(leaf_ref)) => Some(leaf_ref),
            _ => None,
        }
    }

    #[inline]
    pub fn as_leaf_mut(&mut self) -> Option<&mut LeafNode> {
        match self.case_mut() {
            Some(NodeRefMut::Leaf(leaf_ref)) => Some(leaf_ref),
            _ => None,
        }
    }
}

impl AsRef<AnyNode> for InnerNode {
    fn as_ref(&self) -> &AnyNode {
        cast_ref(self)
    }
}

impl AsRef<AnyNode> for LeafNode {
    #[inline]
    fn as_ref(&self) -> &AnyNode {
        cast_ref(self)
    }
}

const_assert_eq!(_NODE_SIZE, size_of::<AnyNode>());
const_assert_eq!(_NODE_ALIGN, align_of::<AnyNode>());

#[derive(Copy, Clone)]
#[repr(packed)]
struct SlabHeader {
    bump_index: u64,
    free_list_len: u64,
    free_list_head: u32,

    root_node: u32,
    leaf_count: u64,
}
unsafe impl Zeroable for SlabHeader {}
unsafe impl Pod for SlabHeader {}

const SLAB_HEADER_LEN: usize = size_of::<SlabHeader>();

#[cfg(debug_assertions)]
unsafe fn invariant(check: bool) {
    if check {
        unreachable!();
    }
}

#[cfg(not(debug_assertions))]
#[inline(always)]
unsafe fn invariant(check: bool) {
    if check {
        std::hint::unreachable_unchecked();
    }
}

#[repr(transparent)]
pub struct Slab([u8]);

impl Slab {
    /// Creates a slab that holds and references the bytes
    ///
    /// ```compile_fail
    /// let slab = {
    ///     let mut bytes = [10; 100];
    ///     serum_dex::critbit::Slab::new(&mut bytes)
    /// };
    /// ```
    #[inline]
    pub fn new(bytes: &mut [u8]) -> &mut Self {
        let len_without_header = bytes.len().checked_sub(SLAB_HEADER_LEN).unwrap();
        let slop = len_without_header % size_of::<AnyNode>();
        let truncated_len = bytes.len() - slop;
        let bytes = &mut bytes[..truncated_len];
        let slab: &mut Self = unsafe { &mut *(bytes as *mut [u8] as *mut Slab) };
        slab.check_size_align(); // check alignment
        slab
    }

    #[inline]
    pub fn assert_minimum_capacity(&self, capacity: u32) -> DexResult {
        if self.nodes().len() <= (capacity as usize) * 2 {
            Err(DexErrorCode::SlabTooSmall)?
        }
        Ok(())
    }

    fn check_size_align(&self) {
        let (header_bytes, nodes_bytes) = array_refs![&self.0, SLAB_HEADER_LEN; .. ;];
        let _header: &SlabHeader = cast_ref(header_bytes);
        let _nodes: &[AnyNode] = cast_slice(nodes_bytes);
    }

    fn parts(&self) -> (&SlabHeader, &[AnyNode]) {
        unsafe {
            invariant(self.0.len() < size_of::<SlabHeader>());
            invariant((self.0.as_ptr() as usize) % align_of::<SlabHeader>() != 0);
            invariant(
                ((self.0.as_ptr() as usize) + size_of::<SlabHeader>()) % align_of::<AnyNode>() != 0,
            );
        }

        let (header_bytes, nodes_bytes) = array_refs![&self.0, SLAB_HEADER_LEN; .. ;];
        let header = cast_ref(header_bytes);
        let nodes = cast_slice(nodes_bytes);
        (header, nodes)
    }

    fn parts_mut(&mut self) -> (&mut SlabHeader, &mut [AnyNode]) {
        unsafe {
            invariant(self.0.len() < size_of::<SlabHeader>());
            invariant((self.0.as_ptr() as usize) % align_of::<SlabHeader>() != 0);
            invariant(
                ((self.0.as_ptr() as usize) + size_of::<SlabHeader>()) % align_of::<AnyNode>() != 0,
            );
        }

        let (header_bytes, nodes_bytes) = mut_array_refs![&mut self.0, SLAB_HEADER_LEN; .. ;];
        let header = cast_mut(header_bytes);
        let nodes = cast_slice_mut(nodes_bytes);
        (header, nodes)
    }

    fn header(&self) -> &SlabHeader {
        self.parts().0
    }

    fn header_mut(&mut self) -> &mut SlabHeader {
        self.parts_mut().0
    }

    fn nodes(&self) -> &[AnyNode] {
        self.parts().1
    }

    fn nodes_mut(&mut self) -> &mut [AnyNode] {
        self.parts_mut().1
    }
}

pub trait SlabView<T> {
    fn capacity(&self) -> u64;
    fn clear(&mut self);
    fn is_empty(&self) -> bool;
    fn get(&self, h: NodeHandle) -> Option<&T>;
    fn get_mut(&mut self, h: NodeHandle) -> Option<&mut T>;
    fn insert(&mut self, val: &T) -> Result<u32, ()>;
    fn remove(&mut self, h: NodeHandle) -> Option<T>;
    fn contains(&self, h: NodeHandle) -> bool;
}

impl SlabView<AnyNode> for Slab {
    fn capacity(&self) -> u64 {
        self.nodes().len() as u64
    }

    fn clear(&mut self) {
        let (header, _nodes) = self.parts_mut();
        *header = SlabHeader {
            bump_index: 0,
            free_list_len: 0,
            free_list_head: 0,

            root_node: 0,
            leaf_count: 0,
        }
    }

    fn is_empty(&self) -> bool {
        let SlabHeader {
            bump_index,
            free_list_len,
            ..
        } = *self.header();
        bump_index == free_list_len
    }

    fn get(&self, key: u32) -> Option<&AnyNode> {
        let node = self.nodes().get(key as usize)?;
        let tag = NodeTag::try_from(node.tag);
        match tag {
            Ok(NodeTag::InnerNode) | Ok(NodeTag::LeafNode) => Some(node),
            _ => None,
        }
    }

    fn get_mut(&mut self, key: u32) -> Option<&mut AnyNode> {
        let node = self.nodes_mut().get_mut(key as usize)?;
        let tag = NodeTag::try_from(node.tag);
        match tag {
            Ok(NodeTag::InnerNode) | Ok(NodeTag::LeafNode) => Some(node),
            _ => None,
        }
    }

    fn insert(&mut self, val: &AnyNode) -> Result<u32, ()> {
        match NodeTag::try_from(identity(val.tag)) {
            Ok(NodeTag::InnerNode) | Ok(NodeTag::LeafNode) => (),
            _ => unreachable!(),
        };

        let (header, nodes) = self.parts_mut();

        if header.free_list_len == 0 {
            if header.bump_index as usize == nodes.len() {
                return Err(());
            }

            if header.bump_index == std::u32::MAX as u64 {
                return Err(());
            }
            let key = header.bump_index as u32;
            header.bump_index += 1;

            nodes[key as usize] = *val;
            return Ok(key);
        }

        let key = header.free_list_head;
        let node = &mut nodes[key as usize];

        match NodeTag::try_from(node.tag) {
            Ok(NodeTag::FreeNode) => assert!(header.free_list_len > 1),
            Ok(NodeTag::LastFreeNode) => assert_eq!(identity(header.free_list_len), 1),
            _ => unreachable!(),
        };

        let next_free_list_head: u32;
        {
            let free_list_item: &FreeNode = cast_ref(node);
            next_free_list_head = free_list_item.next;
        }
        header.free_list_head = next_free_list_head;
        header.free_list_len -= 1;
        *node = *val;
        Ok(key)
    }

    fn remove(&mut self, key: u32) -> Option<AnyNode> {
        let val = *self.get(key)?;
        let (header, nodes) = self.parts_mut();
        let any_node_ref = &mut nodes[key as usize];
        let free_node_ref: &mut FreeNode = cast_mut(any_node_ref);
        *free_node_ref = FreeNode {
            tag: if header.free_list_len == 0 {
                NodeTag::LastFreeNode.into()
            } else {
                NodeTag::FreeNode.into()
            },
            next: header.free_list_head,
            _padding: Zeroable::zeroed(),
        };
        header.free_list_len += 1;
        header.free_list_head = key;
        Some(val)
    }

    fn contains(&self, key: u32) -> bool {
        self.get(key).is_some()
    }
}

#[derive(Debug)]
pub enum SlabTreeError {
    OutOfSpace,
}

impl Slab {
    fn root(&self) -> Option<NodeHandle> {
        if self.header().leaf_count == 0 {
            return None;
        }

        Some(self.header().root_node)
    }

    fn find_min_max(&self, find_max: bool) -> Option<NodeHandle> {
        let mut root: NodeHandle = self.root()?;
        loop {
            let root_contents = self.get(root).unwrap();
            match root_contents.case().unwrap() {
                NodeRef::Inner(&InnerNode { children, .. }) => {
                    root = children[if find_max { 1 } else { 0 }];
                    continue;
                }
                _ => return Some(root),
            }
        }
    }

    #[inline]
    pub fn find_min(&self) -> Option<NodeHandle> {
        self.find_min_max(false)
    }

    #[inline]
    pub fn find_max(&self) -> Option<NodeHandle> {
        self.find_min_max(true)
    }

    #[inline]
    pub fn insert_leaf(
        &mut self,
        new_leaf: &LeafNode,
    ) -> Result<(NodeHandle, Option<LeafNode>), SlabTreeError> {
        let mut root: NodeHandle = match self.root() {
            Some(h) => h,
            None => {
                // create a new root if none exists
                match self.insert(new_leaf.as_ref()) {
                    Ok(handle) => {
                        self.header_mut().root_node = handle;
                        self.header_mut().leaf_count = 1;
                        return Ok((handle, None));
                    }
                    Err(()) => return Err(SlabTreeError::OutOfSpace),
                }
            }
        };
        loop {
            // check if the new node will be a child of the root
            let root_contents = *self.get(root).unwrap();
            let root_key = root_contents.key().unwrap();
            if root_key == new_leaf.key {
                if let Some(NodeRef::Leaf(&old_root_as_leaf)) = root_contents.case() {
                    // clobber the existing leaf
                    *self.get_mut(root).unwrap() = *new_leaf.as_ref();
                    return Ok((root, Some(old_root_as_leaf)));
                }
            }
            let shared_prefix_len: u32 = (root_key ^ new_leaf.key).leading_zeros();
            match root_contents.case() {
                None => unreachable!(),
                Some(NodeRef::Inner(inner)) => {
                    let keep_old_root = shared_prefix_len >= inner.prefix_len;
                    if keep_old_root {
                        root = inner.walk_down(new_leaf.key).0;
                        continue;
                    };
                }
                _ => (),
            };

            // change the root in place to represent the LCA of [new_leaf] and [root]
            let crit_bit_mask: u128 = (1u128 << 127) >> shared_prefix_len;
            let new_leaf_crit_bit = (crit_bit_mask & new_leaf.key) != 0;
            let old_root_crit_bit = !new_leaf_crit_bit;

            let new_leaf_handle = self
                .insert(new_leaf.as_ref())
                .map_err(|()| SlabTreeError::OutOfSpace)?;
            let moved_root_handle = match self.insert(&root_contents) {
                Ok(h) => h,
                Err(()) => {
                    self.remove(new_leaf_handle).unwrap();
                    return Err(SlabTreeError::OutOfSpace);
                }
            };

            let new_root: &mut InnerNode = cast_mut(self.get_mut(root).unwrap());
            *new_root = InnerNode {
                tag: NodeTag::InnerNode.into(),
                prefix_len: shared_prefix_len,
                key: new_leaf.key,
                children: [0; 2],
                _padding: Zeroable::zeroed(),
            };

            new_root.children[new_leaf_crit_bit as usize] = new_leaf_handle;
            new_root.children[old_root_crit_bit as usize] = moved_root_handle;
            self.header_mut().leaf_count += 1;
            return Ok((new_leaf_handle, None));
        }
    }

    #[cfg(test)]
    fn find_by_key(&self, search_key: u128) -> Option<NodeHandle> {
        let mut node_handle: NodeHandle = self.root()?;
        loop {
            let node_ref = self.get(node_handle).unwrap();
            let node_prefix_len = node_ref.prefix_len();
            let node_key = node_ref.key().unwrap();
            let common_prefix_len = (search_key ^ node_key).leading_zeros();
            if common_prefix_len < node_prefix_len {
                return None;
            }
            match node_ref.case().unwrap() {
                NodeRef::Leaf(_) => break Some(node_handle),
                NodeRef::Inner(inner) => {
                    let crit_bit_mask = (1u128 << 127) >> node_prefix_len;
                    let _search_key_crit_bit = (search_key & crit_bit_mask) != 0;
                    node_handle = inner.walk_down(search_key).0;
                    continue;
                }
            }
        }
    }

    #[inline]
    pub fn remove_by_key(&mut self, search_key: u128) -> Option<LeafNode> {
        let mut parent_h = self.root()?;
        let mut child_h;
        let mut crit_bit;
        match self.get(parent_h).unwrap().case().unwrap() {
            NodeRef::Leaf(&leaf) if leaf.key == search_key => {
                let header = self.header_mut();
                assert_eq!(identity(header.leaf_count), 1);
                header.root_node = 0;
                header.leaf_count = 0;
                let _old_root = self.remove(parent_h).unwrap();
                return Some(leaf);
            }
            NodeRef::Leaf(_) => return None,
            NodeRef::Inner(inner) => {
                let (ch, cb) = inner.walk_down(search_key);
                child_h = ch;
                crit_bit = cb;
            }
        }
        loop {
            match self.get(child_h).unwrap().case().unwrap() {
                NodeRef::Inner(inner) => {
                    let (grandchild_h, grandchild_crit_bit) = inner.walk_down(search_key);
                    parent_h = child_h;
                    child_h = grandchild_h;
                    crit_bit = grandchild_crit_bit;
                    continue;
                }
                NodeRef::Leaf(&leaf) => {
                    if leaf.key != search_key {
                        return None;
                    }

                    break;
                }
            }
        }
        // replace parent with its remaining child node
        // free child_h, replace *parent_h with *other_child_h, free other_child_h
        let other_child_h = self.get(parent_h).unwrap().children().unwrap()[!crit_bit as usize];
        let other_child_node_contents = self.remove(other_child_h).unwrap();
        *self.get_mut(parent_h).unwrap() = other_child_node_contents;
        self.header_mut().leaf_count -= 1;
        Some(cast(self.remove(child_h).unwrap()))
    }

    #[inline]
    pub fn remove_min(&mut self) -> Option<LeafNode> {
        self.remove_by_key(self.get(self.find_min()?)?.key()?)
    }

    #[inline]
    pub fn remove_max(&mut self) -> Option<LeafNode> {
        self.remove_by_key(self.get(self.find_max()?)?.key()?)
    }

    #[cfg(test)]
    fn traverse(&self) -> Vec<&LeafNode> {
        fn walk_rec<'a>(slab: &'a Slab, sub_root: NodeHandle, buf: &mut Vec<&'a LeafNode>) {
            match slab.get(sub_root).unwrap().case().unwrap() {
                NodeRef::Leaf(leaf) => {
                    buf.push(leaf);
                }
                NodeRef::Inner(inner) => {
                    walk_rec(slab, inner.children[0], buf);
                    walk_rec(slab, inner.children[1], buf);
                }
            }
        }

        let mut buf = Vec::with_capacity(self.header().leaf_count as usize);
        if let Some(r) = self.root() {
            walk_rec(self, r, &mut buf);
        }
        if buf.len() != buf.capacity() {
            self.hexdump();
        }
        assert_eq!(buf.len(), buf.capacity());
        buf
    }

    #[cfg(test)]
    fn hexdump(&self) {
        println!("Header:");
        hexdump::hexdump(bytemuck::bytes_of(self.header()));
        println!("Data:");
        hexdump::hexdump(cast_slice(self.nodes()));
    }

    #[cfg(test)]
    fn check_invariants(&self) {
        // first check the live tree contents
        let mut count = 0;
        fn check_rec(
            slab: &Slab,
            key: NodeHandle,
            last_prefix_len: u32,
            last_prefix: u128,
            last_crit_bit: bool,
            count: &mut u64,
        ) {
            *count += 1;
            let node = slab.get(key).unwrap();
            assert!(node.prefix_len() > last_prefix_len);
            let node_key = node.key().unwrap();
            assert_eq!(
                last_crit_bit,
                (node_key & ((1u128 << 127) >> last_prefix_len)) != 0
            );
            let prefix_mask = (((((1u128) << 127) as i128) >> last_prefix_len) as u128) << 1;
            assert_eq!(last_prefix & prefix_mask, node.key().unwrap() & prefix_mask);
            if let Some([c0, c1]) = node.children() {
                check_rec(slab, c0, node.prefix_len(), node_key, false, count);
                check_rec(slab, c1, node.prefix_len(), node_key, true, count);
            }
        }
        if let Some(root) = self.root() {
            count += 1;
            let node = self.get(root).unwrap();
            let node_key = node.key().unwrap();
            if let Some([c0, c1]) = node.children() {
                check_rec(self, c0, node.prefix_len(), node_key, false, &mut count);
                check_rec(self, c1, node.prefix_len(), node_key, true, &mut count);
            }
        }
        assert_eq!(
            count + self.header().free_list_len as u64,
            identity(self.header().bump_index)
        );

        let mut free_nodes_remaining = self.header().free_list_len;
        let mut next_free_node = self.header().free_list_head;
        loop {
            let contents;
            match free_nodes_remaining {
                0 => break,
                1 => {
                    contents = &self.nodes()[next_free_node as usize];
                    assert_eq!(identity(contents.tag), u32::from(NodeTag::LastFreeNode));
                }
                _ => {
                    contents = &self.nodes()[next_free_node as usize];
                    assert_eq!(identity(contents.tag), u32::from(NodeTag::FreeNode));
                }
            };
            let typed_ref: &FreeNode = cast_ref(contents);
            next_free_node = typed_ref.next;
            free_nodes_remaining -= 1;
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use bytemuck::bytes_of;
    use rand::prelude::*;

    #[test]
    fn simulate_find_min() {
        use std::collections::BTreeMap;

        for trial in 0..10u64 {
            let mut aligned_buf = vec![0u64; 10_000];
            let bytes: &mut [u8] = cast_slice_mut(aligned_buf.as_mut_slice());

            let slab: &mut Slab = Slab::new(bytes);
            let mut model: BTreeMap<u128, LeafNode> = BTreeMap::new();

            let mut all_keys = vec![];

            let mut rng = StdRng::seed_from_u64(trial);

            assert_eq!(slab.find_min(), None);
            assert_eq!(slab.find_max(), None);

            for i in 0..100 {
                let offset = rng.gen();
                let key = rng.gen();
                let owner = rng.gen();
                let qty = rng.gen();
                let leaf = LeafNode::new(offset, key, owner, qty, FeeTier::Base, 0);

                println!("{:x}", key);
                println!("{}", i);

                slab.insert_leaf(&leaf).unwrap();
                model.insert(key, leaf).ok_or(()).unwrap_err();
                all_keys.push(key);

                // test find_by_key
                let valid_search_key = *all_keys.choose(&mut rng).unwrap();
                let invalid_search_key = rng.gen();

                for &search_key in &[valid_search_key, invalid_search_key] {
                    let slab_value = slab
                        .find_by_key(search_key)
                        .map(|x| slab.get(x))
                        .flatten()
                        .map(bytes_of);
                    let model_value = model.get(&search_key).map(bytes_of);
                    assert_eq!(slab_value, model_value);
                }

                // test find_min
                let slab_min = slab.get(slab.find_min().unwrap()).unwrap();
                let model_min = model.iter().next().unwrap().1;
                assert_eq!(bytes_of(slab_min), bytes_of(model_min));

                // test find_max
                let slab_max = slab.get(slab.find_max().unwrap()).unwrap();
                let model_max = model.iter().next_back().unwrap().1;
                assert_eq!(bytes_of(slab_max), bytes_of(model_max));
            }
        }
    }

    #[test]
    fn simulate_operations() {
        use rand::distributions::WeightedIndex;
        use std::collections::BTreeMap;

        let mut aligned_buf = vec![0u64; 1_250_000];
        let bytes: &mut [u8] = &mut cast_slice_mut(aligned_buf.as_mut_slice());
        let slab: &mut Slab = Slab::new(bytes);
        let mut model: BTreeMap<u128, LeafNode> = BTreeMap::new();

        let mut all_keys = vec![];
        let mut rng = StdRng::seed_from_u64(0);

        #[derive(Copy, Clone)]
        enum Op {
            InsertNew,
            InsertDup,
            Delete,
            Min,
            Max,
            End,
        };

        for weights in &[
            [
                (Op::InsertNew, 2000),
                (Op::InsertDup, 200),
                (Op::Delete, 2210),
                (Op::Min, 500),
                (Op::Max, 500),
                (Op::End, 1),
            ],
            [
                (Op::InsertNew, 10),
                (Op::InsertDup, 200),
                (Op::Delete, 5210),
                (Op::Min, 500),
                (Op::Max, 500),
                (Op::End, 1),
            ],
        ] {
            let dist = WeightedIndex::new(weights.iter().map(|(_op, wt)| wt)).unwrap();

            for i in 0..100_000 {
                slab.check_invariants();
                let model_state = model.values().collect::<Vec<_>>();
                let slab_state = slab.traverse();
                assert_eq!(model_state, slab_state);

                match weights[dist.sample(&mut rng)].0 {
                    op @ Op::InsertNew | op @ Op::InsertDup => {
                        let offset = rng.gen();
                        let key = match op {
                            Op::InsertNew => rng.gen(),
                            Op::InsertDup => *all_keys.choose(&mut rng).unwrap(),
                            _ => unreachable!(),
                        };
                        let owner = rng.gen();
                        let qty = rng.gen();
                        let leaf = LeafNode::new(offset, key, owner, qty, FeeTier::SRM5, 5);

                        println!("Insert {:x}", key);

                        all_keys.push(key);
                        let slab_value = slab.insert_leaf(&leaf).unwrap().1;
                        let model_value = model.insert(key, leaf);
                        if slab_value != model_value {
                            slab.hexdump();
                        }
                        assert_eq!(slab_value, model_value);
                    }
                    Op::Delete => {
                        let key = all_keys
                            .choose(&mut rng)
                            .map(|x| *x)
                            .unwrap_or_else(|| rng.gen());

                        println!("Remove {:x}", key);

                        let slab_value = slab.remove_by_key(key);
                        let model_value = model.remove(&key);
                        assert_eq!(slab_value.as_ref().map(cast_ref), model_value.as_ref());
                    }
                    Op::Min => {
                        if model.len() == 0 {
                            assert_eq!(identity(slab.header().leaf_count), 0);
                        } else {
                            let slab_min = slab.get(slab.find_min().unwrap()).unwrap();
                            let model_min = model.iter().next().unwrap().1;
                            assert_eq!(bytes_of(slab_min), bytes_of(model_min));
                        }
                    }
                    Op::Max => {
                        if model.len() == 0 {
                            assert_eq!(identity(slab.header().leaf_count), 0);
                        } else {
                            let slab_max = slab.get(slab.find_max().unwrap()).unwrap();
                            let model_max = model.iter().next_back().unwrap().1;
                            assert_eq!(bytes_of(slab_max), bytes_of(model_max));
                        }
                    }
                    Op::End => {
                        if i > 10_000 {
                            break;
                        }
                    }
                }
            }
        }
    }
}