1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
//! Asynchronously initiate handshakes.

use std::mem::uninitialized;
use std::io::ErrorKind::{WriteZero, UnexpectedEof, Interrupted, WouldBlock};
use std::io::Error;

use sodiumoxide::crypto::{box_, sign};
use sodiumoxide::utils::memzero;
use futures::{Poll, Async, Future};
use tokio_io::{AsyncRead, AsyncWrite};

use crypto::*;

/// Performs the client side of a handshake.
pub struct ClientHandshaker<'a, S> {
    stream: Option<S>,
    client: Client<'a>,
    state: State,
    data: [u8; MSG3_BYTES], // used to hold and cache the results of `client.create_client_challenge` and `client.create_client_auth`, and any data read from the server
    offset: usize, // offset into the data array at which to read/write
}

impl<'a, S: AsyncRead + AsyncWrite> ClientHandshaker<'a, S> {
    /// Creates a new ClientHandshaker to connect to a server with known public key
    /// and app key over the given `stream`.
    pub fn new(stream: S,
               network_identifier: &'a [u8; NETWORK_IDENTIFIER_BYTES],
               client_longterm_pk: &'a sign::PublicKey,
               client_longterm_sk: &'a sign::SecretKey,
               client_ephemeral_pk: &'a box_::PublicKey,
               client_ephemeral_sk: &'a box_::SecretKey,
               server_longterm_pk: &'a sign::PublicKey)
               -> ClientHandshaker<'a, S> {
        let mut ret = ClientHandshaker {
            stream: Some(stream),
            client: Client::new(network_identifier,
                                &client_longterm_pk.0,
                                &client_longterm_sk.0,
                                &client_ephemeral_pk.0,
                                &client_ephemeral_sk.0,
                                &server_longterm_pk.0),
            state: WriteMsg1,
            data: [0; MSG3_BYTES],
            offset: 0,
        };

        ret.client
            .create_msg1(unsafe {
                             &mut *(&mut ret.data as *mut [u8; MSG3_BYTES] as *mut [u8; MSG1_BYTES])
                         });

        ret
    }
}

/// Zero buffered handshake data on dropping.
impl<'a, S> Drop for ClientHandshaker<'a, S> {
    fn drop(&mut self) {
        memzero(&mut self.data);
    }
}

/// Future implementation to asynchronously drive a handshake.
impl<'a, S: AsyncRead + AsyncWrite> Future for ClientHandshaker<'a, S> {
    type Item = (Result<Outcome, ClientHandshakeFailure>, S);
    type Error = (Error, S);

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        let mut stream = self.stream
            .take()
            .expect("Polled ClientHandshaker after completion");

        match self.state {
            WriteMsg1 => {
                while self.offset < MSG1_BYTES {
                    match stream.write(&self.data[self.offset..MSG1_BYTES]) {
                        Ok(written) => {
                            if written == 0 {
                                return Err((Error::new(WriteZero, "failed to write msg1"), stream));
                            }
                            self.offset += written;
                        }
                        Err(ref e) if e.kind() == WouldBlock => {
                            self.stream = Some(stream);
                            return Ok(Async::NotReady);
                        }
                        Err(ref e) if e.kind() == Interrupted => {}
                        Err(e) => return Err((e, stream)),
                    }
                }

                self.stream = Some(stream);
                self.offset = 0;
                self.state = FlushMsg1;

                return self.poll();
            }

            FlushMsg1 => {
                match stream.flush() {
                    Ok(_) => {}
                    Err(ref e) if e.kind() == WouldBlock => {
                        self.stream = Some(stream);
                        return Ok(Async::NotReady);
                    }
                    Err(ref e) if e.kind() == Interrupted => {}
                    Err(e) => return Err((e, stream)),
                }

                self.stream = Some(stream);
                self.state = ReadMsg2;
                return self.poll();
            }

            ReadMsg2 => {
                while self.offset < MSG2_BYTES {
                    match stream.read(&mut self.data[self.offset..MSG2_BYTES]) {
                        Ok(read) => {
                            if read == 0 {
                                return Err((Error::new(UnexpectedEof, "failed to read msg2"),
                                            stream));
                            }
                            self.offset += read;
                        }
                        Err(ref e) if e.kind() == WouldBlock => {
                            self.stream = Some(stream);
                            return Ok(Async::NotReady);
                        }
                        Err(ref e) if e.kind() == Interrupted => {}
                        Err(e) => return Err((e, stream)),
                    }
                }

                if !self.client
                        .verify_msg2(unsafe {
                                         &*(&self.data as *const [u8; MSG3_BYTES] as
                                            *const [u8; MSG2_BYTES])
                                     }) {
                    return Ok(Async::Ready((Err(ClientHandshakeFailure::InvalidMsg2), stream)));
                }

                self.stream = Some(stream);
                self.offset = 0;
                self.state = WriteMsg3;
                self.client.create_msg3(&mut self.data);
                return self.poll();
            }

            WriteMsg3 => {
                while self.offset < MSG3_BYTES {
                    match stream.write(&self.data[self.offset..MSG3_BYTES]) {
                        Ok(written) => {
                            if written == 0 {
                                return Err((Error::new(WriteZero, "failed to write msg3"), stream));
                            }
                            self.offset += written;
                        }
                        Err(ref e) if e.kind() == WouldBlock => {
                            self.stream = Some(stream);
                            return Ok(Async::NotReady);
                        }
                        Err(ref e) if e.kind() == Interrupted => {}
                        Err(e) => return Err((e, stream)),
                    }
                }

                self.stream = Some(stream);
                self.offset = 0;
                self.state = FlushMsg3;
                return self.poll();
            }

            FlushMsg3 => {
                match stream.flush() {
                    Ok(_) => {}
                    Err(ref e) if e.kind() == WouldBlock => {
                        self.stream = Some(stream);
                        return Ok(Async::NotReady);
                    }
                    Err(ref e) if e.kind() == Interrupted => {}
                    Err(e) => return Err((e, stream)),
                }

                self.stream = Some(stream);
                self.state = ReadMsg4;
                return self.poll();
            }

            ReadMsg4 => {
                while self.offset < MSG4_BYTES {
                    match stream.read(&mut self.data[self.offset..MSG4_BYTES]) {
                        Ok(read) => {
                            if read == 0 {
                                return Err((Error::new(UnexpectedEof, "failed to read msg4"),
                                            stream));
                            }
                            self.offset += read;
                        }
                        Err(ref e) if e.kind() == WouldBlock => {
                            self.stream = Some(stream);
                            return Ok(Async::NotReady);
                        }
                        Err(ref e) if e.kind() == Interrupted => {}
                        Err(e) => return Err((e, stream)),
                    }
                }

                if !self.client
                        .verify_msg4(unsafe {
                                         &*(&self.data as *const [u8; MSG3_BYTES] as
                                            *const [u8; MSG4_BYTES])
                                     }) {
                    return Ok(Async::Ready((Err(ClientHandshakeFailure::InvalidMsg4), stream)));
                }

                let mut outcome = unsafe { uninitialized() };
                self.client.outcome(&mut outcome);
                return Ok(Async::Ready((Ok(outcome), stream)));
            }

        }
    }
}

/// Reason why a client might reject the server although the handshake itself
/// was executed without IO errors.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum ClientHandshakeFailure {
    /// Received invalid msg2 from the server.
    InvalidMsg2,
    /// Received invalid msg4 from the server.
    InvalidMsg4,
}

// State for the future state machine.
enum State {
    WriteMsg1,
    FlushMsg1,
    ReadMsg2,
    WriteMsg3,
    FlushMsg3,
    ReadMsg4,
}
use client::State::*;