1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

use crate::bitwise::Bitwise;
use crate::*;
#[repr(C)]
pub struct SecDed128 {
    encodable_size: u8,
    m: u8,
    mask: u8,
    encode_matrix: [u128; 7],
    syndromes: [u16; 128],
}

impl SecDed128 {
    #[inline]
    fn bin_matrix_product_paritied(matrix: &[u128], value: u128) -> u128 {
        let mut result = 0;
        for x in matrix.iter() {
            if *x != 0 {
                result ^= (*x & value).parity();
                result <<= 1;
            }
        }
        result |= result.parity();
        result
    }

    pub fn new(encodable_size: usize) -> Self {
        if encodable_size > 120 {
            panic!("This implementation is based on u64, and can thus only encode payloads of at most 57 bits");
        }
        let m = hamming_size(encodable_size);
        let mut encode_matrix = [0; 7];
        for i in 1..=(2_u128.pow(m as u32)) {
            if i.count() < 2 {
                continue;
            }
            for (k, x) in encode_matrix.iter_mut().enumerate().take(m) {
                *x <<= 1;
                *x |= i >> (m - 1 - k) & 1;
            }
        }
        for (i, x) in encode_matrix.iter_mut().enumerate().take(m) {
            *x <<= m + 1;
            if i <= m {
                *x |= 1 << (m - i);
            }
        }
        let mut syndromes = [0; 128];
        for (error_bit, syndrome) in syndromes
            .iter_mut()
            .enumerate()
            .take(encodable_size + m + 1)
        {
            let error: u128 = 1u128 << error_bit;
            *syndrome = Self::bin_matrix_product_paritied(&encode_matrix[0..m], error) as u16;
        }
        for (i, x) in syndromes[..=(encodable_size + m)].iter().enumerate() {
            for y in syndromes[i + 1..=(encodable_size + m)].iter() {
                assert_ne!(x, y);
            }
        }
        SecDed128 {
            encodable_size: encodable_size as u8,
            m: m as u8,
            mask: { (0..=m).map(|x| 1u8 << x).sum::<u8>() },
            encode_matrix,
            syndromes,
        }
    }

    #[cfg(feature = "no-panics")]
    #[inline]
    fn encode_assertions(&self, _encodable: u128) {}

    #[cfg(not(feature = "no-panics"))]
    #[inline]
    fn encode_assertions(&self, encodable: u128) {
        #[allow(clippy::cast_lossless)]
        match encodable & self.mask as u128 {
            0 => {}
            _ => {
                let mut buffer: [u8; 16] = unsafe { core::mem::uninitialized() };
                byteorder::BigEndian::write_u128(&mut buffer[..], encodable);
                panic!(
                    "{:?} overlaps with the code-correction slot, which is the right-most {} bits ",
                    buffer.as_ref(),
                    self.code_size(),
                );
            }
        }
        #[allow(clippy::cast_lossless)]
        match 1u128.overflowing_shl((self.encodable_size + self.m + 1) as u32) {
            (value, false) if encodable > value => {
                let mut buffer: [u8; 16] = unsafe { core::mem::uninitialized() };
                byteorder::BigEndian::write_u128(&mut buffer[..], encodable);
                panic!(
                    "{:?} is too big to be encoded on {} bits",
                    buffer.as_ref(),
                    self.encodable_size as usize + self.code_size()
                );
            }
            _ => {}
        };
    }
}

impl SecDedCodec for SecDed128 {
    fn encodable_size(&self) -> usize {
        self.encodable_size as usize
    }
    fn code_size(&self) -> usize {
        (self.m + 1) as usize
    }
    fn expected_slice_size(&self) -> Option<usize> {
        Some(16)
    }

    /// Encodes the data IN-PLACE
    /// # Arguments:
    /// * `data`: The slice of data to encode. The last `secded.code_size()` bits MUST be set to 0.
    /// # Panics:
    /// Panics if `data.len() != 16`
    ///
    /// Unless you use the `no-panics` feature, encoding will also panic if the data you try to encode has some
    /// bits set to 1 in the reserved space, or past the `encodable_size() + code_size()` rightmost bits
    fn encode(&self, buffer: &mut [u8]) {
        let mut encodable = byteorder::BigEndian::read_u128(buffer);
        self.encode_assertions(encodable);
        let code =
            Self::bin_matrix_product_paritied(&self.encode_matrix[..self.m as usize], encodable);
        encodable |= code;
        byteorder::BigEndian::write_u128(&mut buffer[..], encodable);
    }

    /// Decodes the data IN-PLACE
    /// # Arguments:
    /// * `data`: The slice of data to decode.  
    /// The last `secded.code_size()` bits will be reset to 0, a single error will be corrected implicitly.
    /// # Returns:
    /// `Ok(())` if the data slice's correctness has been checked: 0 error found or 1 found and corrected.
    /// `Err(())` if 2 errors were detected.
    /// # Panics:
    /// Panics if `data.len() != 16`
    fn decode(&self, buffer: &mut [u8]) -> Result<(), ()> {
        let mut decodable = byteorder::BigEndian::read_u128(buffer);
        let syndrome =
            Self::bin_matrix_product_paritied(&self.encode_matrix[..self.m as usize], decodable)
                as u16;
        if syndrome == 0 {
            buffer[15] &= !self.mask;
            return Ok(());
        }
        for (i, s) in self.syndromes.iter().enumerate() {
            if *s == syndrome {
                decodable ^= 1 << i;
                byteorder::BigEndian::write_u128(buffer, decodable);
                buffer[15] &= !self.mask;
                return Ok(());
            }
        }
        Err(())
    }
}

#[cfg(feature = "bench")]
#[bench]
fn encode(b: &mut test::Bencher) {
    let secded = SecDed128::new(57);
    let mut buffer = [0u8; 16];
    buffer[13] = 5;
    b.iter(|| {
        if buffer[0] > 0 {
            buffer[0] = 0;
            buffer[15] = 0;
        }
        secded.encode(&mut buffer);
    })
}

#[cfg(feature = "bench")]
#[bench]
fn decode(b: &mut test::Bencher) {
    let secded = SecDed128::new(57);
    let mut buffer = [0u8; 16];
    buffer[13] = 5;
    secded.encode(&mut buffer);
    b.iter(|| {
        let mut local_buffer = buffer;
        secded.decode(&mut local_buffer).unwrap();
    })
}

#[cfg(feature = "bench")]
#[bench]
fn decode_1err(b: &mut test::Bencher) {
    let secded = SecDed128::new(57);
    let mut buffer = [0u8; 16];
    buffer[13] = 5;
    secded.encode(&mut buffer);
    let mut i = 15;
    let mut j = 0;
    b.iter(|| {
        let mut local_buffer = buffer;
        j += 1;
        if j > 7 {
            j = 0;
            i -= 1;
            if i < 9 {
                i = 15;
            }
        }
        local_buffer[i] ^= 1 << j;
        secded.decode(&mut local_buffer).unwrap();
    })
}

#[test]
fn codec() {
    let hamming = SecDed128::new(120);
    //    assert_eq!(hamming.code_size(), 7);
    let mut test_value = [0; 16];
    test_value[12] = 5;
    let mut buffer = test_value;
    hamming.encode(&mut buffer);
    buffer[2] ^= 1;
    hamming.decode(&mut buffer).unwrap();
    assert_eq!(&test_value[..15], &buffer[..15])
}