1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
mod precomputed_replicas;
mod replicas;
mod replication_info;
pub(crate) mod tablets;
#[cfg(test)]
pub(crate) mod test;
mod token_ring;

use rand::{seq::IteratorRandom, Rng};
use scylla_cql::frame::response::result::TableSpec;
pub use token_ring::TokenRing;

use self::tablets::TabletsInfo;

use super::{topology::Strategy, Node, NodeRef};
use crate::routing::{Shard, Token};
use itertools::Itertools;
use precomputed_replicas::PrecomputedReplicas;
use replicas::{ReplicasArray, EMPTY_REPLICAS};
use replication_info::ReplicationInfo;
use std::{
    cmp,
    collections::{HashMap, HashSet},
    sync::Arc,
};
use tracing::debug;

/// `ReplicaLocator` provides a way to find the set of owning nodes for a given (token, replication
/// strategy) pair. It does so by either using the precomputed token ranges, or doing the
/// computation on the fly.
#[derive(Debug, Clone)]
pub struct ReplicaLocator {
    /// the data based on which `ReplicaLocator` computes replica sets.
    replication_data: ReplicationInfo,

    precomputed_replicas: PrecomputedReplicas,

    datacenters: Vec<String>,

    pub(crate) tablets: TabletsInfo,
}

impl ReplicaLocator {
    /// Creates a new `ReplicaLocator` in which the specified replication strategies
    /// (`precompute_replica_sets_for`) will have its token ranges precomputed. This function can
    /// potentially be CPU-intensive (if a ring & replication factors in given strategies are big).
    pub(crate) fn new<'a>(
        ring_iter: impl Iterator<Item = (Token, Arc<Node>)>,
        precompute_replica_sets_for: impl Iterator<Item = &'a Strategy>,
        tablets: TabletsInfo,
    ) -> Self {
        let replication_data = ReplicationInfo::new(ring_iter);
        let precomputed_replicas =
            PrecomputedReplicas::compute(&replication_data, precompute_replica_sets_for);

        let datacenters = replication_data
            .get_global_ring()
            .iter()
            .filter_map(|(_, node)| node.datacenter.as_deref())
            .unique()
            .map(ToOwned::to_owned)
            .collect();

        Self {
            replication_data,
            precomputed_replicas,
            datacenters,
            tablets,
        }
    }

    /// Returns a set of nodes that are considered to be replicas for a given token and strategy.
    /// If the `datacenter` parameter is set, the returned `ReplicaSet` is limited only to replicas
    /// from that datacenter. If a specified datacenter name does not correspond to a valid
    /// datacenter, an empty set will be returned.
    ///
    /// Supported replication strategies: `SimpleStrategy`, 'NetworkTopologyStrategy',
    /// 'LocalStrategy'. If other is specified, it is treated as the `SimpleStrategy` with
    /// replication factor equal to 1.
    ///
    /// If a provided replication strategy did not appear in `precompute_replica_sets_for`
    /// parameter of `Self::new`, invocation of this function will trigger a computation of the
    /// desired replica set (the computation might be delegated in time and start upon interaction
    /// with the returned `ReplicaSet`).
    ///
    /// If the requested table uses Tablets, then a separate code path is taken, which ignores
    /// replication strategies and only uses tablet information stored in ReplicaLocator.
    /// If we don't have info about the tablet that owns the given token, empty set will be returned.
    pub fn replicas_for_token<'a>(
        &'a self,
        token: Token,
        strategy: &'a Strategy,
        datacenter: Option<&'a str>,
        table_spec: &TableSpec,
    ) -> ReplicaSet<'a> {
        if let Some(tablets) = self.tablets.tablets_for_table(table_spec) {
            let replicas: Option<&[(Arc<Node>, Shard)]> = if let Some(datacenter) = datacenter {
                tablets.dc_replicas_for_token(token, datacenter)
            } else {
                tablets.replicas_for_token(token)
            };
            return ReplicaSet {
                inner: ReplicaSetInner::PlainSharded(replicas.unwrap_or(
                    // The table is a tablet table, but we don't have information for given token.
                    // Let's just return empty set in this case.
                    &[],
                )),
                token,
            };
        } else {
            match strategy {
                Strategy::SimpleStrategy { replication_factor } => {
                    if let Some(datacenter) = datacenter {
                        let replicas =
                            self.get_simple_strategy_replicas(token, *replication_factor);

                        return ReplicaSet {
                            inner: ReplicaSetInner::FilteredSimple {
                                replicas,
                                datacenter,
                            },
                            token,
                        };
                    } else {
                        return ReplicaSet {
                            inner: ReplicaSetInner::Plain(
                                self.get_simple_strategy_replicas(token, *replication_factor),
                            ),
                            token,
                        };
                    }
                }
                Strategy::NetworkTopologyStrategy {
                    datacenter_repfactors,
                } => {
                    if let Some(dc) = datacenter {
                        if let Some(repfactor) = datacenter_repfactors.get(dc) {
                            return ReplicaSet {
                                inner: ReplicaSetInner::Plain(
                                    self.get_network_strategy_replicas(token, dc, *repfactor),
                                ),
                                token,
                            };
                        } else {
                            debug!("Datacenter ({}) does not exist!", dc);
                            return ReplicaSet {
                                inner: ReplicaSetInner::Plain(EMPTY_REPLICAS),
                                token,
                            };
                        }
                    } else {
                        return ReplicaSet {
                            inner: ReplicaSetInner::ChainedNTS {
                                datacenter_repfactors,
                                locator: self,
                                token,
                            },
                            token,
                        };
                    }
                }
                Strategy::Other { name, .. } => {
                    debug!("Unknown strategy ({}), falling back to SimpleStrategy with replication_factor = 1", name)
                }
                _ => (),
            }

            // Fallback to simple strategy with replication factor = 1.
            self.replicas_for_token(
                token,
                &Strategy::SimpleStrategy {
                    replication_factor: 1,
                },
                datacenter,
                table_spec,
            )
        }
    }

    /// Gives access to the token ring, based on which all token ranges/replica sets are computed.
    pub fn ring(&self) -> &TokenRing<Arc<Node>> {
        self.replication_data.get_global_ring()
    }

    /// Gives a list of all nodes in the token ring.
    pub fn unique_nodes_in_global_ring(&self) -> &[Arc<Node>] {
        self.replication_data.unique_nodes_in_global_ring()
    }

    /// Gives a list of all known datacenters.
    pub fn datacenter_names(&self) -> &[String] {
        self.datacenters.as_slice()
    }

    /// Gives a list of all nodes in a specified datacenter ring (which is created by filtering the
    /// original ring to only contain nodes living in the specified datacenter).
    pub fn unique_nodes_in_datacenter_ring<'a>(
        &'a self,
        datacenter_name: &str,
    ) -> Option<&'a [Arc<Node>]> {
        self.replication_data
            .unique_nodes_in_datacenter_ring(datacenter_name)
    }

    fn get_simple_strategy_replicas(
        &self,
        token: Token,
        replication_factor: usize,
    ) -> ReplicasArray<'_> {
        if replication_factor == 0 {
            return EMPTY_REPLICAS;
        }

        if let Some(precomputed_replicas) = self
            .precomputed_replicas
            .get_precomputed_simple_strategy_replicas(token, replication_factor)
        {
            precomputed_replicas.into()
        } else {
            ReplicasArray::from_iter(
                self.replication_data
                    .simple_strategy_replicas(token, replication_factor),
            )
        }
    }

    fn get_network_strategy_replicas<'a>(
        &'a self,
        token: Token,
        datacenter: &str,
        datacenter_replication_factor: usize,
    ) -> ReplicasArray<'a> {
        if datacenter_replication_factor == 0 {
            return EMPTY_REPLICAS;
        }

        if let Some(precomputed_replicas) = self
            .precomputed_replicas
            .get_precomputed_network_strategy_replicas(
                token,
                datacenter,
                datacenter_replication_factor,
            )
        {
            ReplicasArray::from(precomputed_replicas)
        } else {
            ReplicasArray::from_iter(self.replication_data.nts_replicas_in_datacenter(
                token,
                datacenter,
                datacenter_replication_factor,
            ))
        }
    }
}

fn with_computed_shard(node: NodeRef, token: Token) -> (NodeRef, Shard) {
    let shard = node
        .sharder()
        .map(|sharder| sharder.shard_of(token))
        .unwrap_or(0);
    (node, shard)
}

#[derive(Debug)]
enum ReplicaSetInner<'a> {
    Plain(ReplicasArray<'a>),

    PlainSharded(&'a [(Arc<Node>, Shard)]),

    // Represents a set of SimpleStrategy replicas that is limited to a specified datacenter.
    FilteredSimple {
        replicas: ReplicasArray<'a>,
        datacenter: &'a str,
    },

    // Represents a set of NetworkTopologyStrategy replicas that is not limited to any specific
    // datacenter. The set is constructed lazily, by invoking
    // `locator.get_network_strategy_replicas()`.
    ChainedNTS {
        datacenter_repfactors: &'a HashMap<String, usize>,
        locator: &'a ReplicaLocator,
        token: Token,
    },
}

/// Represents a set of replicas for a given token and strategy;
///
/// This container can only be created by calling `ReplicaLocator::replicas_for_token`, and it
/// can borrow precomputed replica lists living in the locator.
#[derive(Debug)]
pub struct ReplicaSet<'a> {
    inner: ReplicaSetInner<'a>,
    token: Token,
}

impl<'a> ReplicaSet<'a> {
    /// Chooses a random replica that satisfies the given predicate.
    pub fn choose_filtered<R>(
        self,
        rng: &mut R,
        predicate: impl Fn(&(NodeRef<'a>, Shard)) -> bool,
    ) -> Option<(NodeRef<'a>, Shard)>
    where
        R: Rng + ?Sized,
    {
        let happy = self.choose(rng)?;
        if predicate(&happy) {
            return Some(happy);
        }

        self.into_iter().filter(predicate).choose(rng)
    }

    /// Gets the size of the set.
    ///
    /// If the set represents `SimpleStrategy` replicas that were filtered by datacenter, this
    /// function will have O(R) complexity, where R is the replication factor of that strategy.
    ///
    /// If the set represents `NetworkTopologyStrategy` replicas that were not filtered by
    /// datacenter, this function will have O(D) complexity where D is the number of known
    /// datacenters.
    ///
    /// In all other cases, the complexity is O(1)
    pub fn len(&self) -> usize {
        match &self.inner {
            ReplicaSetInner::Plain(replicas) => replicas.len(),
            ReplicaSetInner::PlainSharded(replicas) => replicas.len(),
            ReplicaSetInner::FilteredSimple {
                replicas,
                datacenter,
            } => replicas
                .iter()
                .filter(|node| node.datacenter.as_deref() == Some(*datacenter))
                .count(),
            ReplicaSetInner::ChainedNTS {
                datacenter_repfactors,
                locator,
                token: _,
            } => datacenter_repfactors
                .iter()
                .map(|(dc, rf)| {
                    let unique_nodes_in_dc_count = locator
                        .unique_nodes_in_datacenter_ring(dc)
                        .map(|nodes| nodes.len())
                        .unwrap_or(0);

                    cmp::min(*rf, unique_nodes_in_dc_count)
                })
                .sum(),
        }
    }

    /// Returns `true` if the replica set contains no elements.
    ///
    /// Complexity same as of `ReplicaSet::len`.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    fn choose<R>(&self, rng: &mut R) -> Option<(NodeRef<'a>, Shard)>
    where
        R: Rng + ?Sized,
    {
        let len = self.len();
        if len > 0 {
            let index = rng.gen_range(0..len);

            match &self.inner {
                ReplicaSetInner::Plain(replicas) => replicas
                    .get(index)
                    .map(|node| with_computed_shard(node, self.token)),
                ReplicaSetInner::PlainSharded(replicas) => {
                    replicas.get(index).map(|(node, shard)| (node, *shard))
                }
                ReplicaSetInner::FilteredSimple {
                    replicas,
                    datacenter,
                } => replicas
                    .iter()
                    .filter(|node| node.datacenter.as_deref() == Some(*datacenter))
                    .nth(index)
                    .map(|node| with_computed_shard(node, self.token)),
                ReplicaSetInner::ChainedNTS {
                    datacenter_repfactors,
                    locator,
                    token,
                } => {
                    let mut nodes_to_skip = index;
                    for datacenter in locator.datacenters.iter() {
                        let requested_repfactor =
                            *datacenter_repfactors.get(datacenter).unwrap_or(&0);
                        let unique_nodes_in_dc_count = locator
                            .unique_nodes_in_datacenter_ring(datacenter)
                            .map(|nodes| nodes.len())
                            .unwrap_or(0);

                        let repfactor = cmp::min(requested_repfactor, unique_nodes_in_dc_count);

                        if nodes_to_skip < repfactor {
                            return locator
                                .get_network_strategy_replicas(*token, datacenter, repfactor)
                                .get(nodes_to_skip)
                                .map(|node| with_computed_shard(node, self.token));
                        }

                        nodes_to_skip -= repfactor;
                    }

                    None
                }
            }
        } else {
            None
        }
    }
}

impl<'a> IntoIterator for ReplicaSet<'a> {
    type Item = (NodeRef<'a>, Shard);
    type IntoIter = ReplicaSetIterator<'a>;

    /// Converts the replica set into iterator. Order defined by that iterator does not have to
    /// match the order set by the token ring.
    ///
    /// Iterating through `ReplicaSet` using this method is far more efficient than invoking the
    /// `get` method sequentially.
    fn into_iter(self) -> Self::IntoIter {
        let inner = match self.inner {
            ReplicaSetInner::Plain(replicas) => ReplicaSetIteratorInner::Plain { replicas, idx: 0 },
            ReplicaSetInner::PlainSharded(replicas) => {
                ReplicaSetIteratorInner::PlainSharded { replicas, idx: 0 }
            }
            ReplicaSetInner::FilteredSimple {
                replicas,
                datacenter,
            } => ReplicaSetIteratorInner::FilteredSimple {
                replicas,
                datacenter,
                idx: 0,
            },
            ReplicaSetInner::ChainedNTS {
                datacenter_repfactors,
                locator,
                token,
            } => {
                if let Some(datacenter) = locator.datacenters.first() {
                    let repfactor = *datacenter_repfactors.get(datacenter.as_str()).unwrap_or(&0);
                    ReplicaSetIteratorInner::ChainedNTS {
                        replicas: locator
                            .get_network_strategy_replicas(token, datacenter, repfactor),
                        replicas_idx: 0,

                        locator,
                        token,
                        datacenter_idx: 0,
                        datacenter_repfactors,
                    }
                } else {
                    ReplicaSetIteratorInner::Plain {
                        replicas: EMPTY_REPLICAS,
                        idx: 0,
                    }
                }
            }
        };

        ReplicaSetIterator {
            inner,
            token: self.token,
        }
    }
}

enum ReplicaSetIteratorInner<'a> {
    Plain {
        replicas: ReplicasArray<'a>,
        idx: usize,
    },
    PlainSharded {
        replicas: &'a [(Arc<Node>, Shard)],
        idx: usize,
    },
    FilteredSimple {
        replicas: ReplicasArray<'a>,
        datacenter: &'a str,
        idx: usize,
    },
    ChainedNTS {
        replicas: ReplicasArray<'a>,
        replicas_idx: usize,

        datacenter_repfactors: &'a HashMap<String, usize>,
        locator: &'a ReplicaLocator,
        token: Token,
        datacenter_idx: usize,
    },
}

/// Iterator that returns replicas from some replica set.
pub struct ReplicaSetIterator<'a> {
    inner: ReplicaSetIteratorInner<'a>,
    token: Token,
}

impl<'a> Iterator for ReplicaSetIterator<'a> {
    type Item = (NodeRef<'a>, Shard);

    fn next(&mut self) -> Option<Self::Item> {
        match &mut self.inner {
            ReplicaSetIteratorInner::Plain { replicas, idx } => {
                if let Some(replica) = replicas.get(*idx) {
                    *idx += 1;
                    return Some(with_computed_shard(replica, self.token));
                }

                None
            }
            ReplicaSetIteratorInner::PlainSharded { replicas, idx } => {
                if let Some((replica, shard)) = replicas.get(*idx) {
                    *idx += 1;
                    return Some((replica, *shard));
                }

                None
            }
            ReplicaSetIteratorInner::FilteredSimple {
                replicas,
                datacenter,
                idx,
            } => {
                while let Some(replica) = replicas.get(*idx) {
                    *idx += 1;
                    if replica.datacenter.as_deref() == Some(*datacenter) {
                        return Some(with_computed_shard(replica, self.token));
                    }
                }

                None
            }
            ReplicaSetIteratorInner::ChainedNTS {
                replicas,
                replicas_idx,
                locator,
                token,
                datacenter_idx,
                datacenter_repfactors,
            } => {
                if let Some(replica) = replicas.get(*replicas_idx) {
                    *replicas_idx += 1;
                    Some(with_computed_shard(replica, self.token))
                } else if *datacenter_idx + 1 < locator.datacenters.len() {
                    *datacenter_idx += 1;
                    *replicas_idx = 0;

                    let datacenter = &locator.datacenters[*datacenter_idx];
                    let repfactor = *datacenter_repfactors.get(datacenter).unwrap_or(&0);
                    *replicas =
                        locator.get_network_strategy_replicas(*token, datacenter, repfactor);

                    self.next()
                } else {
                    None
                }
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        match &self.inner {
            ReplicaSetIteratorInner::Plain { replicas, idx } => {
                let size = replicas.len() - *idx;

                (size, Some(size))
            }
            ReplicaSetIteratorInner::PlainSharded { replicas, idx } => {
                let size = replicas.len() - *idx;

                (size, Some(size))
            }
            ReplicaSetIteratorInner::FilteredSimple {
                replicas,
                datacenter: _,
                idx,
            } => (0, Some(replicas.len() - *idx)),
            ReplicaSetIteratorInner::ChainedNTS {
                replicas: _,
                replicas_idx: _,
                datacenter_repfactors,
                locator,
                token: _,
                datacenter_idx,
            } => {
                let yielded: usize = locator.datacenter_names()[0..*datacenter_idx]
                    .iter()
                    .filter_map(|name| datacenter_repfactors.get(name))
                    .sum();

                (
                    0,
                    Some(datacenter_repfactors.values().sum::<usize>() - yielded),
                )
            }
        }
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        match &mut self.inner {
            ReplicaSetIteratorInner::Plain { replicas: _, idx }
            | ReplicaSetIteratorInner::PlainSharded { replicas: _, idx } => {
                *idx += n;

                self.next()
            }
            _ => {
                for _i in 0..n {
                    self.next()?;
                }

                self.next()
            }
        }
    }
}

impl<'a> ReplicaSet<'a> {
    pub fn into_replicas_ordered(self) -> ReplicasOrdered<'a> {
        ReplicasOrdered { replica_set: self }
    }
}

/// Represents a sequence of replicas for a given token and strategy,
/// ordered according to the ring order (for token-ring tables) or with the
/// order defined by tablet data (for tablet tables).
///
/// This container can only be created by calling `ReplicaSet::into_replicas_ordered()`,
/// and either it can borrow precomputed replica lists living in the locator (in case of SimpleStrategy)
/// or it must compute them on-demand (in case of NetworkTopologyStrategy).
/// The computation is lazy (performed by `ReplicasOrderedIterator` upon call to `next()`).
/// For obtaining the primary replica, no allocations are needed. Therefore, the first call
/// to `next()` is optimised and doesn not allocate.
/// For the remaining others, unfortunately, allocation is unevitable.
pub struct ReplicasOrdered<'a> {
    replica_set: ReplicaSet<'a>,
}

/// Iterator that returns replicas from some replica sequence, ordered according to the ring order.
pub struct ReplicasOrderedIterator<'a> {
    inner: ReplicasOrderedIteratorInner<'a>,
}

enum ReplicasOrderedIteratorInner<'a> {
    AlreadyRingOrdered {
        // In case of Plain and FilteredSimple variants, ReplicaSetIterator respects ring order.
        replica_set_iter: ReplicaSetIterator<'a>,
    },
    PolyDatacenterNTS {
        // In case of ChainedNTS variant, ReplicaSetIterator does not respect ring order,
        // so specific code is needed to yield replicas according to that order.
        replicas_ordered_iter: ReplicasOrderedNTSIterator<'a>,
    },
}

struct ReplicasOrderedNTSIterator<'a> {
    token: Token,
    inner: ReplicasOrderedNTSIteratorInner<'a>,
}

enum ReplicasOrderedNTSIteratorInner<'a> {
    FreshForPick {
        datacenter_repfactors: &'a HashMap<String, usize>,
        locator: &'a ReplicaLocator,
        token: Token,
    },
    Picked {
        datacenter_repfactors: &'a HashMap<String, usize>,
        locator: &'a ReplicaLocator,
        token: Token,
        picked: NodeRef<'a>,
    },
    ComputedFallback {
        replicas: ReplicasArray<'a>,
        idx: usize,
    },
}

impl<'a> Iterator for ReplicasOrderedNTSIterator<'a> {
    type Item = (NodeRef<'a>, Shard);

    fn next(&mut self) -> Option<Self::Item> {
        match self.inner {
            ReplicasOrderedNTSIteratorInner::FreshForPick {
                datacenter_repfactors,
                locator,
                token,
            } => {
                // We're going to find the primary replica for the given token.
                let nodes_on_ring = locator.replication_data.get_global_ring().ring_range(token);
                for node in nodes_on_ring {
                    // If this node's DC has some replicas in this NTS...
                    if let Some(dc) = &node.datacenter {
                        if datacenter_repfactors.get(dc).is_some() {
                            // ...then this node must be the primary replica.
                            self.inner = ReplicasOrderedNTSIteratorInner::Picked {
                                datacenter_repfactors,
                                locator,
                                token,
                                picked: node,
                            };
                            return Some(with_computed_shard(node, self.token));
                        }
                    }
                }
                None
            }
            ReplicasOrderedNTSIteratorInner::Picked {
                datacenter_repfactors,
                locator,
                token,
                picked,
            } => {
                // Clippy can't check that in Eq and Hash impls we don't actually use any field with interior mutability
                // (in Node only `down_marker` is such, being an AtomicBool).
                // https://rust-lang.github.io/rust-clippy/master/index.html#mutable_key_type
                #[allow(clippy::mutable_key_type)]
                let mut all_replicas: HashSet<&'a Arc<Node>> = HashSet::new();
                for (datacenter, repfactor) in datacenter_repfactors.iter() {
                    all_replicas.extend(
                        locator
                            .get_network_strategy_replicas(token, datacenter, *repfactor)
                            .iter(),
                    );
                }
                // It's no use returning a node that was already picked.
                all_replicas.remove(picked);

                let mut replicas_ordered = vec![];
                let nodes_on_ring = locator.replication_data.get_global_ring().ring_range(token);
                for node in nodes_on_ring {
                    if all_replicas.is_empty() {
                        // All replicas were put in order.
                        break;
                    }
                    if all_replicas.remove(node) {
                        replicas_ordered.push(node);
                    }
                }
                assert!(
                    all_replicas.is_empty(),
                    "all_replicas somehow contained a node that wasn't present in the global ring!"
                );

                self.inner = ReplicasOrderedNTSIteratorInner::ComputedFallback {
                    replicas: ReplicasArray::Owned(replicas_ordered),
                    idx: 0,
                };
                self.next()
            }
            ReplicasOrderedNTSIteratorInner::ComputedFallback {
                ref replicas,
                ref mut idx,
            } => {
                if let Some(replica) = replicas.get(*idx) {
                    *idx += 1;
                    Some(with_computed_shard(replica, self.token))
                } else {
                    None
                }
            }
        }
    }
}

impl<'a> Iterator for ReplicasOrderedIterator<'a> {
    type Item = (NodeRef<'a>, Shard);

    fn next(&mut self) -> Option<Self::Item> {
        match &mut self.inner {
            ReplicasOrderedIteratorInner::AlreadyRingOrdered { replica_set_iter } => {
                replica_set_iter.next()
            }
            ReplicasOrderedIteratorInner::PolyDatacenterNTS {
                replicas_ordered_iter,
            } => replicas_ordered_iter.next(),
        }
    }
}

impl<'a> IntoIterator for ReplicasOrdered<'a> {
    type Item = (NodeRef<'a>, Shard);
    type IntoIter = ReplicasOrderedIterator<'a>;

    fn into_iter(self) -> Self::IntoIter {
        let Self { replica_set } = self;
        Self::IntoIter {
            inner: match replica_set.inner {
                ReplicaSetInner::Plain(_) | ReplicaSetInner::FilteredSimple { .. } => {
                    ReplicasOrderedIteratorInner::AlreadyRingOrdered {
                        replica_set_iter: replica_set.into_iter(),
                    }
                }
                ReplicaSetInner::PlainSharded(_) => {
                    ReplicasOrderedIteratorInner::AlreadyRingOrdered {
                        replica_set_iter: replica_set.into_iter(),
                    }
                }
                ReplicaSetInner::ChainedNTS {
                    datacenter_repfactors,
                    locator,
                    token,
                } => ReplicasOrderedIteratorInner::PolyDatacenterNTS {
                    replicas_ordered_iter: ReplicasOrderedNTSIterator {
                        token: replica_set.token,
                        inner: ReplicasOrderedNTSIteratorInner::FreshForPick {
                            datacenter_repfactors,
                            locator,
                            token,
                        },
                    },
                },
            },
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{routing::Token, test_utils::setup_tracing, transport::locator::test::*};

    #[tokio::test]
    async fn test_replicas_ordered() {
        setup_tracing();
        let metadata = mock_metadata_for_token_aware_tests();
        let locator = create_locator(&metadata);

        // For each case (token, limit_to_dc, strategy), we are checking
        // that ReplicasOrdered yields replicas in the expected order.
        let check = |token, limit_to_dc, strategy, table, expected| {
            let replica_set =
                locator.replicas_for_token(Token::new(token), strategy, limit_to_dc, table);
            let replicas_ordered = replica_set.into_replicas_ordered();
            let ids: Vec<_> = replicas_ordered
                .into_iter()
                .map(|(node, _shard)| node.address.port())
                .collect();
            assert_eq!(expected, ids);
        };

        // In all these tests:
        // going through the ring, we get order: F , A , C , D , G , B , E
        //                                       us  eu  eu  us  eu  eu  us
        //                                       r2  r1  r1  r1  r2  r1  r1
        check(
            160,
            None,
            &metadata.keyspaces.get(KEYSPACE_NTS_RF_3).unwrap().strategy,
            TABLE_NTS_RF_3,
            vec![F, A, C, D, G, E],
        );
        check(
            160,
            None,
            &metadata.keyspaces.get(KEYSPACE_NTS_RF_2).unwrap().strategy,
            TABLE_NTS_RF_2,
            vec![F, A, D, G],
        );
        check(
            160,
            None,
            &metadata.keyspaces.get(KEYSPACE_SS_RF_2).unwrap().strategy,
            TABLE_SS_RF_2,
            vec![F, A],
        );

        check(
            160,
            Some("eu"),
            &metadata.keyspaces.get(KEYSPACE_NTS_RF_3).unwrap().strategy,
            TABLE_NTS_RF_3,
            vec![A, C, G],
        );
        check(
            160,
            Some("us"),
            &metadata.keyspaces.get(KEYSPACE_NTS_RF_3).unwrap().strategy,
            TABLE_NTS_RF_3,
            vec![F, D, E],
        );
        check(
            160,
            Some("eu"),
            &metadata.keyspaces.get(KEYSPACE_SS_RF_2).unwrap().strategy,
            TABLE_SS_RF_2,
            vec![A],
        );
    }
}