1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
//! This module implements the HSV color space, a cousin of the HSL color space. The definition of
//! value differs from lightness: it goes from black to full saturation instead of black to
//! white. This makes value an extraordinarily poor analog of luminance (dark purple is the same
//! value as white, despite reflecting one-tenth the light), but does make the hue and saturation a
//! bit more meaningful than HSL. The same caveat applies: this is a poor choice for getting actual
//! color appearance parameters and is outclassed by CIELCH for that purpose, but it is nontheless
//! important as the closest to such a space one can get using only basic transformations of RGB.

use std::f64::EPSILON;
use std::str::FromStr;

use bound::Bound;
use color::{Color, RGBColor, XYZColor};
use coord::Coord;
use csscolor::{parse_hsl_hsv_tuple, CSSParseError};
use illuminants::Illuminant;

/// An HSV color, defining parameters for hue, saturation, and value from the RGB space. This is sHSV
/// to be exact, but the derivation from the sRGB space is assumed as it matches the vast majority of
/// colors called RGB.
/// # Example
/// As with HSL, changing a red to a yellow results in a lightness increase as well.
///
/// ```
/// # use scarlet::prelude::*;
/// # use scarlet::colors::HSVColor;
/// let red = HSVColor{h: 0., s: 0.5, v: 0.8};
/// let yellow = HSVColor{h: 50., s: 0.5, v: 0.8};
/// println!("{} {}", red.convert::<RGBColor>().to_string(), yellow.convert::<RGBColor>().to_string());
/// // prints #CC6666 #CCBB66
/// // note how the second one is strictly more light
/// ```
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub struct HSVColor {
    /// The hue, described as an angle that ranges between 0 and 360 in degrees. While values outside
    /// of this range *may* not break, they shouldn't be treated as valid.
    pub h: f64,
    /// The saturation, defined as the radius of the HSV cylinder and the distance between the color
    /// and the equivalent-value grayscale. Ranges between 0 and 1.
    pub s: f64,
    /// The value, defined as the largest RGB primary value of a color. This corresponds to something
    /// close to color intensity, not really luminance: dark purple and white are the same value, for
    /// example.
    pub v: f64,
}

impl Color for HSVColor {
    /// Converts to HSV by going through sRGB.
    fn from_xyz(xyz: XYZColor) -> HSVColor {
        let rgb = RGBColor::from_xyz(xyz);

        // I call this chroma, but it's a very very rough estimate of the actual color attribute.
        // More info: https://en.wikipedia.org/wiki/HSL_and_HSV#Formal_derivation
        let components = [rgb.r, rgb.g, rgb.b];
        let max_c = components.iter().cloned().fold(-1.0, f64::max);
        let min_c = components.iter().cloned().fold(2.0, f64::min);
        let chroma = max_c - min_c;

        // hue is crazy in a hexagon! no more trig functions for us!
        // it's technically the proportion of the length of the hexagon through the point, but it's
        // treated as degrees
        let hue = if chroma == 0.0 {
            // could be anything, undefined according to Wikipedia, in Scarlet just 0 for gray
            0.0
        } else if (max_c - rgb.r).abs() < EPSILON {
            // in red sector: find which part by comparing green and blue and scaling
            // adding green moves up on the hexagon, adding blue moves down: hence, linearity
            // the modulo makes sure it's in the range 0-360
            (((rgb.g - rgb.b) / chroma) % 6.0) * 60.0
        } else if (max_c - rgb.g).abs() < EPSILON {
            // similar to above, but you add an offset
            ((rgb.b - rgb.r) / chroma) * 60.0 + 120.0
        } else {
            // same as above, different offset
            ((rgb.r - rgb.g) / chroma) * 60.0 + 240.0
        };

        // saturation, scientifically speaking, is chroma adjusted for lightness. For HSL, it's
        // defined relative to the maximum chroma, which varies depending on the place on the
        // cone. Thus, I'll compute lightness first.

        // now we use value: the largest component
        let value = max_c;
        // now back to saturation
        let saturation = if value == 0.0 {
            // this would be a divide by 0 otherwise, just set it to 0 because it doesn't matter
            0.0
        } else {
            chroma / value
        };

        HSVColor {
            h: hue,
            s: saturation,
            v: value,
        }
    }
    /// Converts from HSV back to XYZ. Any illuminant other than D65 is computed using chromatic adaptation.
    fn to_xyz(&self, illuminant: Illuminant) -> XYZColor {
        // first get back chroma

        let chroma = self.s * self.v;
        // find the point with 0 lightness that matches ours in the other two components

        // intermediate value is the second-largest RGB value, where C is the largest because the
        // smallest is 0: call this x
        let x = chroma * (1.0 - ((self.h / 60.0) % 2.0 - 1.0).abs());
        // now split based on which line of the hexagon we're on, i.e., which are the two largest
        // components
        let (r1, g1, b1) = if self.h <= 60.0 {
            (chroma, x, 0.0)
        } else if self.h <= 120.0 {
            (x, chroma, 0.0)
        } else if self.h <= 180.0 {
            (0.0, chroma, x)
        } else if self.h <= 240.0 {
            (0.0, x, chroma)
        } else if self.h <= 300.0 {
            (x, 0.0, chroma)
        } else {
            (chroma, 0.0, x)
        };
        // now we add the right value to each component to get the correct lightness and scale back
        // to 0-255
        let offset = self.v - chroma;
        let r = r1 + offset;
        let g = g1 + offset;
        let b = b1 + offset;
        RGBColor { r, g, b }.to_xyz(illuminant)
    }
}

impl From<Coord> for HSVColor {
    fn from(c: Coord) -> HSVColor {
        HSVColor {
            h: c.x,
            s: c.y,
            v: c.z,
        }
    }
}

impl From<HSVColor> for Coord {
    fn from(val: HSVColor) -> Self {
        Coord {
            x: val.h,
            y: val.s,
            z: val.v,
        }
    }
}

impl Bound for HSVColor {
    fn bounds() -> [(f64, f64); 3] {
        [(0., 360.), (0., 1.), (0., 1.)]
    }
}

impl FromStr for HSVColor {
    type Err = CSSParseError;

    fn from_str(s: &str) -> Result<HSVColor, CSSParseError> {
        if !s.starts_with("hsv(") {
            return Err(CSSParseError::InvalidColorSyntax);
        }
        let tup: String = s.chars().skip(3).collect::<String>();
        match parse_hsl_hsv_tuple(&tup) {
            Ok(res) => Ok(HSVColor {
                h: res.0,
                s: res.1,
                v: res.2,
            }),
            Err(_e) => Err(_e),
        }
    }
}

#[cfg(test)]
mod tests {
    #[allow(unused_imports)]
    use super::*;

    #[test]
    fn test_hsl_rgb_conversion() {
        let red_rgb = RGBColor {
            r: 1.,
            g: 0.,
            b: 0.,
        };
        let red_hsv: HSVColor = red_rgb.convert();
        assert!(red_hsv.h.abs() <= 0.0001);
        assert!((red_hsv.s - 1.0) <= 0.0001);
        assert!((red_hsv.v - 1.0) <= 0.0001);
        let lavender_hsv = HSVColor {
            h: 243.5,
            s: 0.568,
            v: 0.925,
        };
        let lavender_rgb: RGBColor = lavender_hsv.convert();
        assert_eq!(lavender_rgb.to_string(), "#6E66EC");
    }

    #[test]
    fn test_hsv_string_parsing() {
        let red_hsv: HSVColor = "hsv(0, 120%, 50%)".parse().unwrap();
        assert!(red_hsv.h.abs() <= 0.0001);
        assert!((red_hsv.s - 1.0) <= 0.0001);
        assert!((red_hsv.v - 0.5) <= 0.0001);
        let lavender_hsv: HSVColor = "hsv(-445, 24%, 1000%)".parse().unwrap();
        let lavender_rgb: RGBColor = lavender_hsv.convert();
        assert_eq!(lavender_rgb.to_string(), "#E6C2FF");
        // test error
        assert!("hsv(254%, 0, 0)".parse::<HSVColor>().is_err());
    }
}