1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
//! The Interpolate module allows for conversion between various sample rates.

use {Duplex, Frame, Sample, Signal};
use core::f64::consts::PI;
use ring_buffer;
use ops::f64::{sin, cos};

/// An iterator that converts the rate at which frames are yielded from some given frame
/// Interpolator into a new type.
///
/// Other names for `sample::interpolate::Converter` might include:
///
/// - Sample rate converter
/// - {Up/Down}sampler
/// - Sample interpolater
/// - Sample decimator
///
#[derive(Clone)]
pub struct Converter<S, I>
where
    S: Signal,
    I: Interpolator,
{
    source: S,
    interpolator: I,
    interpolation_value: f64,
    source_to_target_ratio: f64,
}

/// Interpolator that just rounds off any values to the previous value from the source
pub struct Floor<F> {
    left: F,
}

/// Interpolator that interpolates linearly between the previous value and the next value
pub struct Linear<F> {
    left: F,
    right: F,
}

/// Interpolator for sinc interpolation.
///
/// Generally accepted as one of the better sample rate converters, although it uses significantly
/// more computation.
pub struct Sinc<S> {
    frames: ring_buffer::Fixed<S>,
    idx: usize,
}

/// Types that can interpolate between two values.
///
/// Implementations should keep track of the necessary data both before and after the current
/// frame.
pub trait Interpolator {
    type Frame: Frame;

    /// Given a distance between [0.0 and 1.0) to the following sample, return the interpolated
    /// value.
    fn interpolate(&self, x: f64) -> Self::Frame;

    /// Called whenever the Interpolator value steps passed 1.0.
    fn next_source_frame(&mut self, source_frame: Self::Frame);
}

impl<S, I> Converter<S, I>
where
    S: Signal,
    I: Interpolator,
{
    /// Construct a new `Converter` from the source frames and the source and target sample rates
    /// (in Hz).
    #[inline]
    pub fn from_hz_to_hz(source: S, interpolator: I, source_hz: f64, target_hz: f64) -> Self {
        Self::scale_playback_hz(source, interpolator, source_hz / target_hz)
    }

    /// Construct a new `Converter` from the source frames and the amount by which the current
    /// ***playback*** **rate** (not sample rate) should be multiplied to reach the new playback
    /// rate.
    ///
    /// For example, if our `source_frames` is a sine wave oscillating at a frequency of 2hz and
    /// we wanted to convert it to a frequency of 3hz, the given `scale` should be `1.5`.
    #[inline]
    pub fn scale_playback_hz(source: S, interpolator: I, scale: f64) -> Self {
        assert!(
            scale > 0.0,
            "We can't yield any frames at 0 times a second!"
        );
        Converter {
            source: source,
            interpolator: interpolator,
            interpolation_value: 0.0,
            source_to_target_ratio: scale,
        }
    }

    /// Construct a new `Converter` from the source frames and the amount by which the current
    /// ***sample*** **rate** (not playback rate) should be multiplied to reach the new sample
    /// rate.
    ///
    /// If our `source_frames` are being sampled at a rate of 44_100hz and we want to
    /// convert to a sample rate of 96_000hz, the given `scale` should be `96_000.0 / 44_100.0`.
    ///
    /// This is the same as calling `Converter::scale_playback_hz(source_frames, 1.0 / scale)`.
    #[inline]
    pub fn scale_sample_hz(source: S, interpolator: I, scale: f64) -> Self {
        Self::scale_playback_hz(source, interpolator, 1.0 / scale)
    }

    /// Update the `source_to_target_ratio` internally given the source and target hz.
    ///
    /// This method might be useful for changing the sample rate during playback.
    #[inline]
    pub fn set_hz_to_hz(&mut self, source_hz: f64, target_hz: f64) {
        self.set_playback_hz_scale(source_hz / target_hz)
    }

    /// Update the `source_to_target_ratio` internally given a new **playback rate** multiplier.
    ///
    /// This method is useful for dynamically changing rates.
    #[inline]
    pub fn set_playback_hz_scale(&mut self, scale: f64) {
        self.source_to_target_ratio = scale;
    }

    /// Update the `source_to_target_ratio` internally given a new **sample rate** multiplier.
    ///
    /// This method is useful for dynamically changing rates.
    #[inline]
    pub fn set_sample_hz_scale(&mut self, scale: f64) {
        self.set_playback_hz_scale(1.0 / scale);
    }

    /// Borrow the `source_frames` Interpolator from the `Converter`.
    #[inline]
    pub fn source(&self) -> &S {
        &self.source
    }

    /// Mutably borrow the `source_frames` Iterator from the `Converter`.
    #[inline]
    pub fn source_mut(&mut self) -> &mut S {
        &mut self.source
    }

    /// Drop `self` and return the internal `source_frames` Iterator.
    #[inline]
    pub fn into_source(self) -> S {
        self.source
    }
}

impl<S, I> Signal for Converter<S, I>
where
    S: Signal,
    I: Interpolator<Frame = S::Frame>,
{
    type Frame = S::Frame;

    fn next(&mut self) -> Self::Frame {
        let Converter {
            ref mut source,
            ref mut interpolator,
            ref mut interpolation_value,
            source_to_target_ratio,
        } = *self;

        // Advance frames
        while *interpolation_value >= 1.0 {
            interpolator.next_source_frame(source.next());
            *interpolation_value -= 1.0;
        }

        let out = interpolator.interpolate(*interpolation_value);
        *interpolation_value += source_to_target_ratio;
        out
    }

    fn is_exhausted(&self) -> bool {
        self.source.is_exhausted() && self.interpolation_value >= 1.0
    }
}

impl<F> Floor<F> {
    /// Create a new Floor Interpolator.
    pub fn new(left: F) -> Floor<F> {
        Floor { left: left }
    }

    /// Consumes the first value from a given source in order to initialize itself. If the source
    /// has no values at all, this will return None.
    pub fn from_source<S>(source: &mut S) -> Floor<F>
    where
        F: Frame,
        S: Signal<Frame = F>,
    {
        let left = source.next();
        Floor { left: left }
    }
}

impl<F> Linear<F> {
    /// Create a new Linear Interpolator.
    pub fn new(left: F, right: F) -> Linear<F> {
        Linear {
            left: left,
            right: right,
        }
    }

    /// Consumes the first value from a given source to initialize itself. If the source has no
    /// values, this will return None.
    pub fn from_source<S>(source: &mut S) -> Linear<F>
    where
        F: Frame,
        S: Signal<Frame = F>,
    {
        let left = source.next();
        let right = source.next();
        Linear {
            left: left,
            right: right,
        }
    }
}

impl<S> Sinc<S> {
    /// Create a new **Sinc** interpolator with the given ring buffer.
    ///
    /// The given ring buffer should have a length twice that of the desired sinc interpolation
    /// `depth`.
    ///
    /// The initial contents of the ring_buffer will act as padding for the interpolated signal.
    ///
    /// **panic!**s if the given ring buffer's length is not a multiple of `2`.
    pub fn new(frames: ring_buffer::Fixed<S>) -> Self
    where
        S: ring_buffer::SliceMut,
        S::Element: Frame,
    {
        assert!(frames.len() % 2 == 0);
        Sinc {
            frames: frames,
            idx: 0,
        }
    }

    fn depth(&self) -> usize
    where
        S: ring_buffer::Slice,
    {
        self.frames.len() / 2
    }
}

impl<F> Interpolator for Floor<F>
where
    F: Frame,
    F::Sample: Duplex<f64>,
{
    type Frame = F;

    fn interpolate(&self, _x: f64) -> Self::Frame {
        self.left
    }

    fn next_source_frame(&mut self, source_frame: Self::Frame) {
        self.left = source_frame;
    }
}

impl<F> Interpolator for Linear<F>
where
    F: Frame,
    F::Sample: Duplex<f64>,
{
    type Frame = F;

    /// Converts linearly from the previous value, using the next value to interpolate. It is
    /// possible, although not advisable, to provide an x > 1.0 or < 0.0, but this will just
    /// continue to be a linear ramp in one direction or another.
    fn interpolate(&self, x: f64) -> Self::Frame {
        self.left.zip_map(self.right, |l, r| {
            let l_f = l.to_sample::<f64>();
            let r_f = r.to_sample::<f64>();
            let diff = r_f - l_f;
            ((diff * x) + l_f).to_sample::<<Self::Frame as Frame>::Sample>()
        })
    }

    fn next_source_frame(&mut self, source_frame: Self::Frame) {
        self.left = self.right;
        self.right = source_frame;
    }
}

impl<S> Interpolator for Sinc<S>
where
    S: ring_buffer::SliceMut,
    S::Element: Frame,
    <S::Element as Frame>::Sample: Duplex<f64>,
{
    type Frame = S::Element;

    /// Sinc interpolation
    fn interpolate(&self, x: f64) -> Self::Frame {
        let phil = x;
        let phir = 1.0 - x;
        let nl = self.idx;
        let nr = self.idx + 1;
        let depth = self.depth();

        let rightmost = nl + depth;
        let leftmost = nr as isize - depth as isize;
        let max_depth = if rightmost >= self.frames.len() {
            self.frames.len() - depth
        } else if leftmost < 0 {
            (depth as isize + leftmost) as usize
        } else {
            depth
        };

        (0..max_depth).fold(Self::Frame::equilibrium(), |mut v, n| {
            v = {
                let a = PI * (phil + n as f64);
                let first = sin(a) / a;
                let second = 0.5 + 0.5 * cos(a / (phil + max_depth as f64));
                v.zip_map(self.frames[nr - n], |vs, r_lag| {
                    vs.add_amp(
                        (first * second * r_lag.to_sample::<f64>())
                            .to_sample::<<Self::Frame as Frame>::Sample>()
                            .to_signed_sample(),
                    )
                })
            };

            let a = PI * (phir + n as f64);
            let first = sin(a) / a;
            let second = 0.5 + 0.5 * cos(a / (phir + max_depth as f64));
            v.zip_map(self.frames[nl + n], |vs, r_lag| {
                vs.add_amp(
                    (first * second * r_lag.to_sample::<f64>())
                        .to_sample::<<Self::Frame as Frame>::Sample>()
                        .to_signed_sample(),
                )
            })
        })
    }

    fn next_source_frame(&mut self, source_frame: Self::Frame) {
        let _old_frame = self.frames.push(source_frame);
        if self.idx < self.depth() {
            self.idx += 1;
        }
    }
}