1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
use core::num::Wrapping;

use crate::constants::{
    // SHA256_LENGTH,
    SHA512_LENGTH,
};

pub type Digest = [u8; SHA512_LENGTH];

#[allow(non_snake_case)]
// this is `rotate-right(x, n)` for 64-bit words
// implicitly, 0 <= n < 64
fn R(w: Wrapping<u64>, n: usize) -> Wrapping<u64> {
    (w >> n) | (w << (64 - n))
}
#[allow(non_snake_case)]
// this is "choose", input `x` picks the output bit from y or z:
// if bit `i` of `x` is 1, then output is bit `i` from `y`,
// else bit `i` from `z`.
fn Ch(x: Wrapping<u64>, y: Wrapping<u64>, z: Wrapping<u64>) -> Wrapping<u64> {
    (x & y) ^ (!x & z)
}
#[allow(non_snake_case)]
// this is "majority", each bit is the majority of the
// three input bits of x, y, z at this index
fn Maj(x: Wrapping<u64>, y: Wrapping<u64>, z: Wrapping<u64>) -> Wrapping<u64> {
    (x & y) ^ (x & z) ^ (y & z)
}
#[allow(non_snake_case)]
fn Sigma0(x: Wrapping<u64>) -> Wrapping<u64> {
    R(x, 28) ^ R(x, 34) ^ R(x, 39)
}
#[allow(non_snake_case)]
fn Sigma1(x: Wrapping<u64>) -> Wrapping<u64> {
    R(x, 14) ^ R(x, 18) ^ R(x, 41)
}
fn sigma0(x: Wrapping<u64>) -> Wrapping<u64> {
    R(x, 1) ^ R(x, 8) ^ (x >> 7)
}
fn sigma1(x: Wrapping<u64>) -> Wrapping<u64> {
    R(x, 19) ^ R(x, 61) ^ (x >> 6)
}

#[rustfmt::skip]
// fyi, these are the first 64 bits of the fractional parts of
// the cube roots of the first 80 primes
static K: [u64; 80] = [
  0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
  0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
  0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
  0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694,
  0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
  0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
  0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4,
  0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70,
  0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
  0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
  0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30,
  0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
  0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
  0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
  0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
  0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b,
  0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
  0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
  0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
  0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817,
];

fn hash_blocks(digest: &mut [u8; 64], msg: &[u8]) -> usize {
    #![allow(non_snake_case)]
    use core::convert::TryInto;

    // convert digest (u8-array) into hash parts (u64-words array)
    let mut H: [Wrapping<u64>; 8] = Default::default(); //[Wrapping(0); 8];
    for (h, chunk) in H.iter_mut().zip(digest.chunks(8)) {
        // *h = Wrapping(BigEndian::read_u64(chunk));
        *h = Wrapping(u64::from_be_bytes(chunk.try_into().unwrap()));
    }

    let unprocessed = msg.len() & 127; // remainder modulo 128
    for block in msg[..msg.len() - unprocessed].chunks(128) {
        // W is the "message schedule", it is updated below
        // This is like Section 6.1.3 from FIPS 180.
        let mut W: [Wrapping<u64>; 16] = Default::default(); //[Wrapping(0); 16];
        for (w, chunk) in W.iter_mut().zip(block.chunks(8)) {
            *w = Wrapping(u64::from_be_bytes(chunk.try_into().unwrap()));
        }

        // initialize "working variables" with previous hash
        let mut a = H[0];
        let mut b = H[1];
        let mut c = H[2];
        let mut d = H[3];
        let mut e = H[4];
        let mut f = H[5];
        let mut g = H[6];
        let mut h = H[7];

        // apply 80 rounds
        for t in 0..80 {
            let T1 = h + Sigma1(e) + Ch(e, f, g) + Wrapping(K[t]) + W[t % 16];
            let T2 = Sigma0(a) + Maj(a, b, c);
            h = g;
            g = f;
            f = e;
            e = d + T1;
            d = c;
            c = b;
            b = a;
            a = T1 + T2;

            // update message schedule if necessary
            if t % 16 == 15 {
                // TODO: need Wprev??
                // let Wprev = W.clone();
                // for j in 0..16 {
                //     W[j] +=      Wprev[(j +  9) % 16]
                //         + sigma0(Wprev[(j +  1) % 16])
                //         + sigma1(Wprev[(j + 14) % 16]);
                // }
                for j in 0..16 {
                    W[j] +=
                        W[(j + 9) % 16] + sigma0(W[(j + 1) % 16]) + sigma1(W[(j + 14) % 16]);
                }
            }
        }
        H[0] += a;
        H[1] += b;
        H[2] += c;
        H[3] += d;
        H[4] += e;
        H[5] += f;
        H[6] += g;
        H[7] += h;
    }

    // convert hash parts (u64-words array) back into digest (u8-array)
    for (d, h) in digest.chunks_mut(8).zip(H.iter()) {
        // BigEndian::write_u64(d, h.0);
        d.copy_from_slice(&h.0.to_be_bytes());
    }

    unprocessed
}

#[rustfmt::skip]
// fyi, these are the first 64 bits of the fractional parts
// of the square roots of the first 8 primes
static IV: [u8; 64] = [
  0x6a,0x09,0xe6,0x67,0xf3,0xbc,0xc9,0x08,
  0xbb,0x67,0xae,0x85,0x84,0xca,0xa7,0x3b,
  0x3c,0x6e,0xf3,0x72,0xfe,0x94,0xf8,0x2b,
  0xa5,0x4f,0xf5,0x3a,0x5f,0x1d,0x36,0xf1,
  0x51,0x0e,0x52,0x7f,0xad,0xe6,0x82,0xd1,
  0x9b,0x05,0x68,0x8c,0x2b,0x3e,0x6c,0x1f,
  0x1f,0x83,0xd9,0xab,0xfb,0x41,0xbd,0x6b,
  0x5b,0xe0,0xcd,0x19,0x13,0x7e,0x21,0x79,
];

// generates a 64 bytes hash of the `msg`
// https://dx.doi.org/10.6028/NIST.FIPS.180-4
//
// steps:
// - pad message to obtain 128 byte blocks
// - start with IV
// - "hash in" each block in turn
#[allow(dead_code)]
pub fn sha512(digest: &mut [u8; 64], msg: &[u8]) {
    let l = msg.len();
    // assert!(l >> 125 == 0);  // u128-encoded length is in bits

    // initialize digest with the initialisation vector
    // let mut h: [u8; 64] = IV.clone();
    digest.copy_from_slice(&IV);

    // hash full (128 bytes) blocks from message
    let unprocessed = hash_blocks(digest, msg);

    // generate padding (can be 1 or 2 blocks of 128 bytes)
    let mut padding: [u8; 256] = [0u8; 256];
    let padding_length = match unprocessed < 112 {
        true => 128,
        false => 256,
    };
    // first: remaining message
    padding[..unprocessed].copy_from_slice(&msg[l - unprocessed..]);
    // then: bit 1 followed by zero bits until...
    padding[unprocessed] = 128;
    // ...message length in bits (NB: l is in bytes)
    #[cfg(target_pointer_width = "64")] {
        padding[padding_length - 9] = (l >> 61) as u8;
    }
    // BigEndian::write_u64(&mut padding[padding_length - 8..], (l << 3) as u64);
    padding[padding_length - 8..].copy_from_slice(&((l << 3) as u64).to_be_bytes());

    let padding = &padding[..padding_length];
    hash_blocks(digest, padding);

    // digest.copy_from_slice(&h);
}


/// self-contained Sha512 hash, following TweetNaCl
pub struct Sha512 {
    digest: Digest,
    buffer: [u8; 128],
    unprocessed: usize,
    data_length: usize,
}

impl Sha512 {
    pub fn new() -> Sha512 {
        let mut digest: Digest = [0; SHA512_LENGTH];
        digest.copy_from_slice(&IV);
        Sha512 {
            digest: digest,
            buffer: [0; 128],
            unprocessed: 0,
            data_length: 0,
        }
    }

    pub fn update(&mut self, data: &[u8]) {
        self.data_length += data.len();

        // if self.unprocessed + data.len() < 128 {
        if self.unprocessed + data.len() & !(0x80 - 1) == 0 {
            self.buffer[self.unprocessed..self.unprocessed + data.len()]
                .copy_from_slice(&data);
            self.unprocessed += data.len();
        } else {
            // fill up buffer
            let filler = 128 - self.unprocessed;
            self.buffer[self.unprocessed..]
                .copy_from_slice(&data[..filler]);
            hash_blocks(&mut self.digest, &self.buffer);

            self.unprocessed = hash_blocks(&mut self.digest, &data[filler..]);
            self.buffer[..self.unprocessed]
                .copy_from_slice(&data[data.len() - self.unprocessed..]);
        }
    }

    pub fn updated(mut self, data: &[u8]) -> Self {
        self.update(data);
        self
    }

    //
    // NOT WORKING
    //
    // pub fn new_update(&mut self, data: &[u8]) {
    //     self.data_length += data.len();

    //     let mut data_ref = data;
    //     if self.unprocessed + data.len() >= 128 {
    //         let filler = 128 - self.unprocessed;
    //         self.buffer[self.unprocessed..]
    //             .copy_from_slice(&data[..filler]);
    //         hash_blocks(&mut self.digest, &self.buffer);
    //         data_ref = &data[filler..];
    //     }
    //     if data_ref.len() >= 128 {
    //         self.unprocessed = hash_blocks(&mut self.digest, &data_ref);
    //     } else {
    //         self.unprocessed = data_ref.len();
    //     }
    //     self.buffer[..self.unprocessed]
    //         .copy_from_slice(&data_ref[data_ref.len() - self.unprocessed..]);
    // }

    pub fn finalize(mut self) -> Digest {
        // generate padding (can be 1 or 2 blocks of 128 bytes)
        let mut padding: [u8; 256] = [0u8; 256];
        let padding_length = match self.unprocessed < 112 {
            true => 128,
            false => 256,
        };
        // first: remaining message
        padding[..self.unprocessed].copy_from_slice(&self.buffer[..self.unprocessed]);
        // then: bit 1 followed by zero bits until...
        padding[self.unprocessed] = 128;
        // ...message length in bits (NB: l is in bytes)

        #[cfg(target_pointer_width = "64")] {
            padding[padding_length - 9] = (self.data_length >> 61) as u8;
        }

        // BigEndian::write_u64(&mut padding[padding_length - 8..], (self.data_length << 3) as u64);
        // padding[padding_length - 8..].copy_from_slice(&((self.data_length << 3) as u64).to_be_bytes());
        padding[padding_length - 8..padding_length].copy_from_slice(&((self.data_length << 3) as u64).to_be_bytes());

        let padding = &padding[..padding_length];
        hash_blocks(&mut self.digest, padding);

        self.digest
    }
}