1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
//! Trait definitions
use crate::data::DataOrSuffStat;
use rand::Rng;

/// Random variable
///
/// Contains the minimal functionality that a random object must have to be
/// useful: a function defining the un-normalized density/mass at a point,
/// and functions to draw samples from the distribution.
pub trait Rv<X> {
    /// Probability function
    ///
    /// # Example
    ///
    /// ```
    /// use rv::dist::Gaussian;
    /// use rv::traits::Rv;
    ///
    /// let g = Gaussian::standard();
    /// assert!(g.f(&0.0_f64) > g.f(&0.1_f64));
    /// assert!(g.f(&0.0_f64) > g.f(&-0.1_f64));
    /// ```
    fn f(&self, x: &X) -> f64 {
        self.ln_f(x).exp()
    }

    /// Probability function
    ///
    /// # Example
    ///
    /// ```
    /// use rv::dist::Gaussian;
    /// use rv::traits::Rv;
    ///
    /// let g = Gaussian::standard();
    /// assert!(g.ln_f(&0.0_f64) > g.ln_f(&0.1_f64));
    /// assert!(g.ln_f(&0.0_f64) > g.ln_f(&-0.1_f64));
    /// ```
    fn ln_f(&self, x: &X) -> f64;

    /// Single draw from the `Rv`
    ///
    /// # Example
    ///
    /// Flip a coin
    ///
    /// ```
    /// use rv::dist::Bernoulli;
    /// use rv::traits::Rv;
    ///
    /// let b = Bernoulli::uniform();
    /// let mut rng = rand::thread_rng();
    /// let x: bool = b.draw(&mut rng); // could be true, could be false.
    /// ```
    fn draw<R: Rng>(&self, rng: &mut R) -> X;

    /// Multiple draws of the `Rv`
    ///
    /// # Example
    ///
    /// Flip a lot of coins
    ///
    /// ```
    /// use rv::dist::Bernoulli;
    /// use rv::traits::Rv;
    ///
    /// let b = Bernoulli::uniform();
    /// let mut rng = rand::thread_rng();
    /// let xs: Vec<bool> = b.sample(22, &mut rng);
    ///
    /// assert_eq!(xs.len(), 22);
    /// ```
    ///
    /// Estimate Gaussian mean
    ///
    /// ```
    /// use rv::dist::Gaussian;
    /// use rv::traits::Rv;
    ///
    /// let gauss = Gaussian::standard();
    /// let mut rng = rand::thread_rng();
    /// let xs: Vec<f64> = gauss.sample(100_000, &mut rng);
    ///
    /// assert::close(xs.iter().sum::<f64>()/100_000.0, 0.0, 1e-2);
    /// ```
    fn sample<R: Rng>(&self, n: usize, mut rng: &mut R) -> Vec<X> {
        (0..n).map(|_| self.draw(&mut rng)).collect()
    }

    /// Create a never-ending iterator of samples
    ///
    /// # Example
    ///
    /// Estimate the mean of a Gamma distribution
    ///
    /// ```
    /// use rv::traits::Rv;
    /// use rv::dist::Gamma;
    ///
    /// let mut rng = rand::thread_rng();
    ///
    /// let gamma = Gamma::new(2.0, 1.0).unwrap();
    ///
    /// let n = 1_000_000_usize;
    /// let mean = <Gamma as Rv<f64>>::sample_stream(&gamma, &mut rng)
    ///     .take(n)
    ///     .sum::<f64>() / n as f64;;
    ///
    /// assert::close(mean, 2.0, 1e-2);
    /// ```
    fn sample_stream<'r, R: Rng>(
        &'r self,
        mut rng: &'r mut R,
    ) -> Box<dyn Iterator<Item = X> + 'r> {
        Box::new(std::iter::repeat_with(move || self.draw(&mut rng)))
    }
}

/// Identifies the support of the Rv
pub trait Support<X> {
    /// Returns `true` if `x` is in the support of the `Rv`
    ///
    /// # Example
    ///
    /// ```
    /// use rv::dist::Uniform;
    /// use rv::traits::Support;
    ///
    /// // Create uniform with support on the interval [0, 1]
    /// let u = Uniform::new(0.0, 1.0).unwrap();
    ///
    /// assert!(u.supports(&0.5_f64));
    /// assert!(!u.supports(&-0.1_f64));
    /// assert!(!u.supports(&1.1_f64));
    /// ```
    fn supports(&self, x: &X) -> bool;
}

/// Is a continuous probability distributions
///
/// This trait uses the `Rv<X>` and `Support<X>` implementations to implement
/// itself.
pub trait ContinuousDistr<X>: Rv<X> + Support<X> {
    /// The value of the Probability Density Function (PDF) at `x`
    ///
    /// # Example
    ///
    /// Compute the Gaussian PDF, f(x)
    ///
    /// ```
    /// use rv::dist::Gaussian;
    /// use rv::traits::ContinuousDistr;
    ///
    /// let g = Gaussian::standard();
    ///
    /// let f_mean = g.pdf(&0.0_f64);
    /// let f_low = g.pdf(&-1.0_f64);
    /// let f_high = g.pdf(&1.0_f64);
    ///
    /// assert!(f_mean > f_low);
    /// assert!(f_mean > f_high);
    /// assert!((f_low - f_high).abs() < 1E-12);
    /// ```
    ///
    /// Returns 0 if x is not in support
    ///
    /// ```
    /// # use rv::traits::ContinuousDistr;
    /// use rv::dist::Exponential;
    ///
    /// let expon = Exponential::new(1.0).unwrap();
    /// let f = expon.pdf(&-1.0_f64);
    /// assert_eq!(f, 0.0);
    /// ```
    fn pdf(&self, x: &X) -> f64 {
        self.ln_pdf(x).exp()
    }

    /// The value of the log Probability Density Function (PDF) at `x`
    ///
    /// # Example
    ///
    /// Compute the natural logarithm of the Gaussian PDF, ln(f(x))
    ///
    /// ```
    /// use rv::dist::Gaussian;
    /// use rv::traits::ContinuousDistr;
    ///
    /// let g = Gaussian::standard();
    ///
    /// let lnf_mean = g.ln_pdf(&0.0_f64);
    /// let lnf_low = g.ln_pdf(&-1.0_f64);
    /// let lnf_high = g.ln_pdf(&1.0_f64);
    ///
    /// assert!(lnf_mean > lnf_low);
    /// assert!(lnf_mean > lnf_high);
    /// assert!((lnf_low - lnf_high).abs() < 1E-12);
    /// ```
    ///
    /// Returns -inf if x is not in support
    ///
    /// ```
    /// # use rv::traits::ContinuousDistr;
    /// use rv::dist::Exponential;
    ///
    /// let expon = Exponential::new(1.0).unwrap();
    /// let f = expon.ln_pdf(&-1.0_f64);
    /// assert_eq!(f, std::f64::NEG_INFINITY);
    /// ```
    fn ln_pdf(&self, x: &X) -> f64 {
        if self.supports(x) {
            self.ln_f(x)
        } else {
            std::f64::NEG_INFINITY
        }
    }
}

/// Has a cumulative distribution function (CDF)
pub trait Cdf<X>: Rv<X> {
    /// The value of the Cumulative Density Function at `x`
    ///
    /// # Example
    ///
    /// The proportion of probability in (-∞, μ) in N(μ, σ) is 50%
    ///
    /// ```
    /// use rv::dist::Gaussian;
    /// use rv::traits::Cdf;
    ///
    /// let g = Gaussian::new(1.0, 1.5).unwrap();
    ///
    /// assert!((g.cdf(&1.0_f64) - 0.5).abs() < 1E-12);
    /// ```
    fn cdf(&self, x: &X) -> f64;

    /// Survival function, `1 - CDF(x)`
    fn sf(&self, x: &X) -> f64 {
        1.0 - self.cdf(x)
    }
}

/// Has an inverse-CDF / quantile function
pub trait InverseCdf<X>: Rv<X> + Support<X> {
    /// The value of the `x` at the given probability in the CDF
    ///
    /// # Example
    ///
    /// The CDF identity: p = CDF(x) => x = CDF<sup>-1</sup>(p)
    ///
    /// ```
    /// use rv::dist::Gaussian;
    /// use rv::traits::Cdf;
    /// use rv::traits::InverseCdf;
    ///
    /// let g = Gaussian::standard();
    ///
    /// let x: f64 = 1.2;
    /// let p: f64 = g.cdf(&x);
    /// let y: f64 = g.invcdf(p);
    ///
    /// // x and y should be about the same
    /// assert!((x - y).abs() < 1E-12);
    /// ```
    fn invcdf(&self, p: f64) -> X;

    /// Alias for `invcdf`
    fn quantile(&self, p: f64) -> X {
        self.invcdf(p)
    }

    /// Interval containing `p` proportion for the probability
    ///
    /// # Example
    ///
    /// Confidence interval
    ///
    /// ```
    /// use rv::dist::Gaussian;
    /// use rv::traits::InverseCdf;
    ///
    /// let g = Gaussian::new(100.0, 15.0).unwrap();
    /// let ci: (f64, f64) = g.interval(0.68268949213708585);  // one stddev
    /// assert!( (ci.0 - 85.0).abs() < 1E-12);
    /// assert!( (ci.1 - 115.0).abs() < 1E-12);
    /// ```
    fn interval(&self, p: f64) -> (X, X) {
        let pt = (1.0 - p) / 2.0;
        (self.quantile(pt), self.quantile(p + pt))
    }
}

/// Is a discrete probability distribution
pub trait DiscreteDistr<X>: Rv<X> + Support<X> {
    /// Probability mass function (PMF) at `x`
    ///
    /// # Panics
    ///
    /// If `x` is not supported
    ///
    /// # Example
    ///
    /// The probability of a fair coin coming up heads in 0.5
    ///
    /// ```
    /// use rv::dist::Bernoulli;
    /// use rv::traits::DiscreteDistr;
    ///
    /// // Fair coin (p = 0.5)
    /// let b = Bernoulli::uniform();
    ///
    /// assert!( (b.pmf(&true) - 0.5).abs() < 1E-12);
    /// ```
    fn pmf(&self, x: &X) -> f64 {
        self.ln_pmf(x).exp()
    }

    /// Natural logarithm of the probability mass function (PMF)
    ///
    /// # Example
    ///
    /// The probability of a fair coin coming up heads in 0.5
    ///
    /// ```
    /// use rv::dist::Bernoulli;
    /// use rv::traits::DiscreteDistr;
    ///
    /// // Fair coin (p = 0.5)
    /// let b = Bernoulli::uniform();
    ///
    /// assert!( (b.ln_pmf(&true) - 0.5_f64.ln()).abs() < 1E-12);
    /// ```
    fn ln_pmf(&self, x: &X) -> f64 {
        if self.supports(x) {
            self.ln_f(x)
        } else {
            std::f64::NEG_INFINITY
        }
    }
}

/// Defines the distribution mean
pub trait Mean<X> {
    /// Returns `None` if the mean is undefined
    fn mean(&self) -> Option<X>;
}

/// Defines the distribution median
pub trait Median<X> {
    /// Returns `None` if the median is undefined
    fn median(&self) -> Option<X>;
}

/// Defines the distribution mode
pub trait Mode<X> {
    /// Returns `None` if the mode is undefined or is not a single value
    fn mode(&self) -> Option<X>;
}

/// Defines the distribution variance
pub trait Variance<X> {
    /// Returns `None` if the variance is undefined
    fn variance(&self) -> Option<X>;
}

/// Defines the distribution entropy
pub trait Entropy {
    /// The entropy, *H(X)*
    fn entropy(&self) -> f64;
}

pub trait Skewness {
    fn skewness(&self) -> Option<f64>;
}

pub trait Kurtosis {
    fn kurtosis(&self) -> Option<f64>;
}

/// KL divergences
pub trait KlDivergence {
    /// The KL divergence, KL(P|Q) between this distribution, P, and another, Q
    ///
    /// # Example
    ///
    /// ```
    /// use rv::dist::Gaussian;
    /// use rv::traits::KlDivergence;
    ///
    /// let g1 = Gaussian::new(1.0, 1.0).unwrap();
    /// let g2 = Gaussian::new(-1.0, 2.0).unwrap();
    ///
    /// let kl_self = g1.kl(&g1);
    /// let kl_other = g1.kl(&g2);
    ///
    /// // KL(P|P) = 0
    /// assert!( kl_self < 1E-12 );
    ///
    /// // KL(P|Q) > 0 if P ≠ Q
    /// assert!( kl_self < kl_other );
    /// ```
    fn kl(&self, other: &Self) -> f64;

    /// Symmetrised divergence, KL(P|Q) + KL(Q|P)
    ///
    /// # Example
    ///
    /// ```
    /// use rv::dist::Gaussian;
    /// use rv::traits::KlDivergence;
    ///
    /// let g1 = Gaussian::new(1.0, 1.0).unwrap();
    /// let g2 = Gaussian::new(-1.0, 2.0).unwrap();
    ///
    /// let kl_12 = g1.kl(&g2);
    /// let kl_21 = g2.kl(&g1);
    ///
    /// let kl_sym = g1.kl_sym(&g2);
    ///
    /// assert!( (kl_12 + kl_21 - kl_sym).abs() < 1E-10 );
    /// ```
    fn kl_sym(&self, other: &Self) -> f64 {
        self.kl(other) + other.kl(self)
    }
}

/// The data for this distribution can be summarized by a statistic
pub trait HasSuffStat<X>: Rv<X> {
    type Stat: SuffStat<X>;
    fn empty_suffstat(&self) -> Self::Stat;

    /// Return the log likelihood for the data represented by the sufficient
    /// statistic.
    fn ln_f_stat(&self, stat: &Self::Stat) -> f64;
}

/// Is a [sufficient statistic](https://en.wikipedia.org/wiki/Sufficient_statistic) for a
/// distribution.
///
/// # Examples
///
/// Basic suffstat useage.
///
/// ```
/// use rv::data::BernoulliSuffStat;
/// use rv::traits::SuffStat;
///
/// // Bernoulli sufficient statistics are the number of observations, n, and
/// // the number of successes, k.
/// let mut stat = BernoulliSuffStat::new();
///
/// assert!(stat.n() == 0 && stat.k() == 0);
///
/// stat.observe(&true);  // observe `true`
/// assert!(stat.n() == 1 && stat.k() == 1);
///
/// stat.observe(&false);  // observe `false`
/// assert!(stat.n() == 2 && stat.k() == 1);
///
/// stat.forget_many(&vec![false, true]);  // forget `true` and `false`
/// assert!(stat.n() == 0 && stat.k() == 0);
/// ```
///
/// Conjugate analysis of coin flips using Bernoulli with a Beta prior on the
/// success probability.
///
/// ```
/// use rv::traits::SuffStat;
/// use rv::traits::ConjugatePrior;
/// use rv::data::BernoulliSuffStat;
/// use rv::dist::{Bernoulli, Beta};
///
/// let flips = vec![true, false, false];
///
/// // Pack the data into a sufficient statistic that holds the number of
/// // trials and the number of successes
/// let mut stat = BernoulliSuffStat::new();
/// stat.observe_many(&flips);
///
/// let prior = Beta::jeffreys();
///
/// // If we observe more false than true, the posterior predictive
/// // probability of true decreases.
/// let pp_no_obs = prior.pp(&true, &(&BernoulliSuffStat::new()).into());
/// let pp_obs = prior.pp(&true, &(&flips).into());
///
/// assert!(pp_obs < pp_no_obs);
/// ```
pub trait SuffStat<X> {
    /// Returns the number of observations
    fn n(&self) -> usize;

    /// Assimilate the datum `x` into the statistic
    fn observe(&mut self, x: &X);

    /// Remove the datum `x` from the statistic
    fn forget(&mut self, x: &X);

    /// Assimilate several observations
    fn observe_many(&mut self, xs: &[X]) {
        xs.iter().for_each(|x| self.observe(x));
    }

    /// Forget several observations
    fn forget_many(&mut self, xs: &[X]) {
        xs.iter().for_each(|x| self.forget(x));
    }
}

/// A prior on `Fx` that induces a posterior that is the same form as the prior
///
/// # Example
///
/// Conjugate analysis of coin flips using Bernoulli with a Beta prior on the
/// success probability.
///
/// ```
/// use rv::traits::ConjugatePrior;
/// use rv::dist::{Bernoulli, Beta};
///
/// let flips = vec![true, false, false];
/// let prior = Beta::jeffreys();
///
/// // If we observe more false than true, the posterior predictive
/// // probability of true decreases.
/// let pp_no_obs = prior.pp(&true, &(&vec![]).into());
/// let pp_obs = prior.pp(&true, &(&flips).into());
///
/// assert!(pp_obs < pp_no_obs);
/// ```
///
/// Use a cache to speed up repeated computations.
///
/// ```
/// # use rv::traits::ConjugatePrior;
/// use rv::traits::{Rv, SuffStat};
/// use rv::dist::{Categorical, SymmetricDirichlet};
/// use rv::data::{CategoricalSuffStat, DataOrSuffStat};
/// use std::time::Instant;
///
/// let ncats = 10;
/// let symdir = SymmetricDirichlet::jeffreys(ncats).unwrap();
/// let mut suffstat = CategoricalSuffStat::new(ncats);
/// let mut rng = rand::thread_rng();
///
/// Categorical::new(&vec![1.0, 1.0, 5.0, 1.0, 2.0, 1.0, 1.0, 2.0, 1.0, 1.0])
///     .unwrap()
///     .sample_stream(&mut rng)
///     .take(1000)
///     .for_each(|x: u8| suffstat.observe(&x));
///
///
/// let stat = DataOrSuffStat::SuffStat(&suffstat);
///
/// // Get predictions from predictive distribution using the cache
/// let t_cache = {
///     let t_start = Instant::now();
///     let cache = symdir.ln_pp_cache(&stat);
///     // Argmax
///     let k_max = (0..ncats).fold((0, std::f64::NEG_INFINITY), |(ix, f), y| {
///             let f_r = symdir.ln_pp_with_cache(&cache, &y);
///             if f_r > f {
///                 (y, f_r)
///             } else {
///                 (ix, f)
///             }
///
///         });
///
///     assert_eq!(k_max.0, 2);
///     t_start.elapsed()
/// };
///
/// // Get predictions from predictive distribution w/o cache
/// let t_no_cache = {
///     let t_start = Instant::now();
///     // Argmax
///     let k_max = (0..ncats).fold((0, std::f64::NEG_INFINITY), |(ix, f), y| {
///             let f_r = symdir.ln_pp(&y, &stat);
///             if f_r > f {
///                 (y, f_r)
///             } else {
///                 (ix, f)
///             }
///
///         });
///
///     assert_eq!(k_max.0, 2);
///     t_start.elapsed()
/// };
///
/// // Using cache improves runtime
/// assert!(t_no_cache.as_nanos() >  t_cache.as_nanos());
/// ```
pub trait ConjugatePrior<X, Fx>: Rv<Fx>
where
    Fx: Rv<X> + HasSuffStat<X>,
{
    /// Type of the posterior distribution
    type Posterior: Rv<Fx>;
    /// Type of the `ln_m` cache
    type LnMCache;
    /// Type of the `ln_pp` cache
    type LnPpCache;

    /// Computes the posterior distribution from the data
    fn posterior(&self, x: &DataOrSuffStat<X, Fx>) -> Self::Posterior;

    /// Compute the cache for the log marginal likelihood.
    fn ln_m_cache(&self) -> Self::LnMCache;

    /// Log marginal likelihood with supplied cache.
    fn ln_m_with_cache(
        &self,
        cache: &Self::LnMCache,
        x: &DataOrSuffStat<X, Fx>,
    ) -> f64;

    /// The log marginal likelihood
    fn ln_m(&self, x: &DataOrSuffStat<X, Fx>) -> f64 {
        let cache = self.ln_m_cache();
        self.ln_m_with_cache(&cache, x)
    }

    /// Compute the cache for the Log posterior predictive of y given x.
    ///
    /// The cache should encompass all information about `x`.
    fn ln_pp_cache(&self, x: &DataOrSuffStat<X, Fx>) -> Self::LnPpCache;

    /// Log posterior predictive of y given x with supplied ln(norm)
    fn ln_pp_with_cache(&self, cache: &Self::LnPpCache, y: &X) -> f64;

    /// Log posterior predictive of y given x
    fn ln_pp(&self, y: &X, x: &DataOrSuffStat<X, Fx>) -> f64 {
        let cache = self.ln_pp_cache(x);
        self.ln_pp_with_cache(&cache, y)
    }

    /// Marginal likelihood of x
    fn m(&self, x: &DataOrSuffStat<X, Fx>) -> f64 {
        self.ln_m(x).exp()
    }

    /// Posterior Predictive distribution
    fn pp(&self, y: &X, x: &DataOrSuffStat<X, Fx>) -> f64 {
        self.ln_pp(y, x).exp()
    }
}

/// Get the quad bounds of a univariate real distribution
pub trait QuadBounds {
    fn quad_bounds(&self) -> (f64, f64);
}