1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
//! Provides random variables for probabilistic modeling.
//!
//! The [`dist`] module provides a number of probability distributions with
//! various traits implemented in the [`traits`] module. You can do all the
//! standard probability distribution stuff like evaluate the PDF/PMF and draw
//! values of different types.
//!
//! The [`prelude`] module provides all the distributions, all the traits, and
//! creates a few useful type aliases.
//!
//! # Design
//!
//! Random variables are designed to be flexible. For example, we don't just
//! want a `Beta` distribution that works with `f64`; we want it to work with a
//! bunch of things
//!
//! ```
//! use rv::prelude::*;
//!
//! // Beta(0.5, 0.5)
//! let beta = Beta::jeffreys();
//!
//! let mut rng = rand::thread_rng();
//!
//! // 100 f64 weights in (0, 1)
//! let f64s: Vec<f64> = beta.sample(100, &mut rng);
//! let pdf_x = beta.ln_pdf(&f64s[42]);
//!
//! // 100 f32 weights in (0, 1)
//! let f32s: Vec<f32> = beta.sample(100, &mut rng);
//! let pdf_y = beta.ln_pdf(&f32s[42]);
//!
//! // 100 Bernoulli distributions -- Beta is a prior on the weight
//! let berns: Vec<Bernoulli> = beta.sample(100, &mut rng);
//! let pdf_bern = beta.ln_pdf(&berns[42]);
//! ```
//!
//! # Examples
//!
//! For more examples, check out the `examples` directory.
//!
//! ## Conjugate analysis of coin flips
//!
//! ```rust
//! use rv::prelude::*;
//!
//! let mut rng = rand::thread_rng();
//!
//! // A sequence of observations
//! let flips = vec![true, false, true, true, true, false, true];
//!
//! // Construct the Jeffreys prior of Beta(0.5, 0.5)
//! let prior = Beta::jeffreys();
//!
//! // Packages the data in a wrapper that marks it as having come from
//! // Bernoulli trials.
//! let obs: BernoulliData<bool> = DataOrSuffStat::Data(&flips);
//!
//! // Generate the posterior distribution P(θ|x); the distribution of
//! // probable coin weights
//! let posterior: Beta = prior.posterior(&obs);
//!
//! // What is the probability that the next flip would come up heads
//! // (true) given the observed flips (posterior predictive)?
//! let p_heads = prior.pp(&true, &obs);
//! ```
#![warn(
    clippy::all,
    clippy::imprecise_flops,
    clippy::suboptimal_flops,
    clippy::unseparated_literal_suffix,
    clippy::unreadable_literal,
    clippy::option_option,
    clippy::implicit_clone
)]

#[cfg(feature = "serde1")]
extern crate serde;

// Test the README
use doc_comment::doctest;
doctest!("../README.md");

pub mod consts;
pub mod data;
pub mod dist;
pub mod misc;
mod model;
pub mod prelude;
#[cfg(feature = "process")]
pub mod process;
pub mod test;
pub mod traits;

pub use crate::model::ConjugateModel;

#[macro_export]
macro_rules! impl_display {
    ($kind: ty) => {
        impl ::std::fmt::Display for $kind {
            fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                write!(f, "{}", String::from(self))
            }
        }
    };
}

#[macro_export]
macro_rules! clone_cache_f64 {
    ($this:ident, $($field:tt)+) => {
        if let Some(&val) = $this.$($field)+.get() {
            OnceCell::from(val)
        } else {
            OnceCell::new()
        }
    }
}

#[macro_export]
macro_rules! extract_stat {
    ($fx: ty, $stat_type: ty) => {
        fn extract_stat(x: &DataOrSuffStat<f64, $fx>) -> $stat_type {
            match x {
                DataOrSuffStat::SuffStat(ref s) => (*s).clone(),
                DataOrSuffStat::Data(xs) => {
                    let mut stat = $stat_type::new();
                    xs.iter().for_each(|y| stat.observe(y));
                    stat
                }
                DataOrSuffStat::None => $stat_type::new(),
            }
        }
    };
}