1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
//! Log Normal Distribution over x in (0, ∞)
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};

use crate::consts::*;
use crate::impl_display;
use crate::traits::*;
use rand::Rng;
use special::Error as _;
use std::f64::consts::SQRT_2;
use std::fmt;

/// [LogNormal Distribution](https://en.wikipedia.org/wiki/Log-normal_distribution)
/// If x ~ Normal(μ, σ), then e^x ~ LogNormal(μ, σ).
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct LogNormal {
    /// log scale mean
    mu: f64,
    /// log scale standard deviation
    sigma: f64,
}

#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum LogNormalError {
    /// The mu parameter is infinite or NaN
    MuNotFinite { mu: f64 },
    /// The sigma parameter is less than or equal to zero
    SigmaTooLow { sigma: f64 },
    /// The sigma parameter is infinite or NaN
    SigmaNotFinite { sigma: f64 },
}

impl LogNormal {
    /// Create a new LogNormal distribution
    ///
    /// # Arguments
    /// - mu: log scale mean
    /// - sigma: log scale standard deviation
    #[inline]
    pub fn new(mu: f64, sigma: f64) -> Result<Self, LogNormalError> {
        if !mu.is_finite() {
            Err(LogNormalError::MuNotFinite { mu })
        } else if sigma <= 0.0 {
            Err(LogNormalError::SigmaTooLow { sigma })
        } else if !sigma.is_finite() {
            Err(LogNormalError::SigmaNotFinite { sigma })
        } else {
            Ok(LogNormal { mu, sigma })
        }
    }

    /// Creates a new LogNormal without checking whether the parameters are
    /// valid.
    #[inline]
    pub fn new_unchecked(mu: f64, sigma: f64) -> Self {
        LogNormal { mu, sigma }
    }

    /// LogNorma(0, 1)
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::LogNormal;
    /// let lognormal = LogNormal::standard();
    /// assert_eq!(lognormal, LogNormal::new(0.0, 1.0).unwrap());
    /// ```
    #[inline]
    pub fn standard() -> Self {
        LogNormal {
            mu: 0.0,
            sigma: 1.0,
        }
    }

    /// Get the mu parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::LogNormal;
    /// let lognormal = LogNormal::new(-1.0, 2.0).unwrap();
    /// assert_eq!(lognormal.mu(), -1.0);
    /// ```
    #[inline]
    pub fn mu(&self) -> f64 {
        self.mu
    }

    /// Set the value of mu
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::LogNormal;
    /// let mut lognormal = LogNormal::new(2.0, 1.5).unwrap();
    /// assert_eq!(lognormal.mu(), 2.0);
    ///
    /// lognormal.set_mu(1.3).unwrap();
    /// assert_eq!(lognormal.mu(), 1.3);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::LogNormal;
    /// # let mut lognormal = LogNormal::new(2.0, 1.5).unwrap();
    /// assert!(lognormal.set_mu(1.3).is_ok());
    /// assert!(lognormal.set_mu(std::f64::NEG_INFINITY).is_err());
    /// assert!(lognormal.set_mu(std::f64::INFINITY).is_err());
    /// assert!(lognormal.set_mu(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_mu(&mut self, mu: f64) -> Result<(), LogNormalError> {
        if !mu.is_finite() {
            Err(LogNormalError::MuNotFinite { mu })
        } else {
            self.set_mu_unchecked(mu);
            Ok(())
        }
    }

    /// Set the value of mu without input validation
    #[inline]
    pub fn set_mu_unchecked(&mut self, mu: f64) {
        self.mu = mu;
    }

    /// Get the sigma parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::LogNormal;
    /// let lognormal = LogNormal::new(-1.0, 2.0).unwrap();
    /// assert_eq!(lognormal.sigma(), 2.0);
    /// ```
    #[inline]
    pub fn sigma(&self) -> f64 {
        self.sigma
    }

    /// Set the value of sigma
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::LogNormal;
    /// let mut lognormal = LogNormal::standard();
    /// assert_eq!(lognormal.sigma(), 1.0);
    ///
    /// lognormal.set_sigma(2.3).unwrap();
    /// assert_eq!(lognormal.sigma(), 2.3);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::LogNormal;
    /// # let mut lognormal = LogNormal::standard();
    /// assert!(lognormal.set_sigma(2.3).is_ok());
    /// assert!(lognormal.set_sigma(0.0).is_err());
    /// assert!(lognormal.set_sigma(-1.0).is_err());
    /// assert!(lognormal.set_sigma(std::f64::INFINITY).is_err());
    /// assert!(lognormal.set_sigma(std::f64::NEG_INFINITY).is_err());
    /// assert!(lognormal.set_sigma(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_sigma(&mut self, sigma: f64) -> Result<(), LogNormalError> {
        if sigma <= 0.0 {
            Err(LogNormalError::SigmaTooLow { sigma })
        } else if !sigma.is_finite() {
            Err(LogNormalError::SigmaNotFinite { sigma })
        } else {
            self.set_sigma_unchecked(sigma);
            Ok(())
        }
    }

    /// Set the value of sigma
    #[inline]
    pub fn set_sigma_unchecked(&mut self, sigma: f64) {
        self.sigma = sigma;
    }
}

impl Default for LogNormal {
    fn default() -> Self {
        LogNormal::standard()
    }
}

impl From<&LogNormal> for String {
    fn from(lognorm: &LogNormal) -> String {
        format!("LogNormal(μ: {}, σ: {})", lognorm.mu, lognorm.sigma)
    }
}

impl_display!(LogNormal);

macro_rules! impl_traits {
    ($kind: ty) => {
        impl Rv<$kind> for LogNormal {
            fn ln_f(&self, x: &$kind) -> f64 {
                // TODO: cache ln(sigma)
                let xk = f64::from(*x);
                let xk_ln = xk.ln();
                let d = (xk_ln - self.mu) / self.sigma;
                -xk_ln - self.sigma.ln() - HALF_LN_2PI - 0.5 * d * d
            }

            fn draw<R: Rng>(&self, rng: &mut R) -> $kind {
                let g =
                    rand_distr::LogNormal::new(self.mu, self.sigma).unwrap();
                rng.sample(g) as $kind
            }

            fn sample<R: Rng>(&self, n: usize, rng: &mut R) -> Vec<$kind> {
                let g =
                    rand_distr::LogNormal::new(self.mu, self.sigma).unwrap();
                (0..n).map(|_| rng.sample(g) as $kind).collect()
            }
        }

        impl ContinuousDistr<$kind> for LogNormal {}

        impl Support<$kind> for LogNormal {
            fn supports(&self, x: &$kind) -> bool {
                *x > 0.0 && x.is_finite()
            }
        }

        impl Cdf<$kind> for LogNormal {
            fn cdf(&self, x: &$kind) -> f64 {
                let xk = f64::from(*x);
                0.5 + 0.5
                    * ((xk.ln() - self.mu) / (SQRT_2 * self.sigma)).error()
            }
        }

        impl InverseCdf<$kind> for LogNormal {
            fn invcdf(&self, p: f64) -> $kind {
                (self.mu + SQRT_2 * self.sigma * (2.0 * p - 1.0).inv_error())
                    .exp() as $kind
            }
        }

        impl Mean<$kind> for LogNormal {
            fn mean(&self) -> Option<$kind> {
                Some((self.mu + self.sigma * self.sigma / 2.0).exp() as $kind)
            }
        }

        impl Median<$kind> for LogNormal {
            fn median(&self) -> Option<$kind> {
                Some(self.mu.exp() as $kind)
            }
        }

        impl Mode<$kind> for LogNormal {
            fn mode(&self) -> Option<$kind> {
                Some((self.mu - self.sigma * self.sigma) as $kind)
            }
        }
    };
}

impl Variance<f64> for LogNormal {
    fn variance(&self) -> Option<f64> {
        Some(
            ((self.sigma * self.sigma).exp() - 1.0)
                * (2.0 * self.mu + self.sigma * self.sigma).exp(),
        )
    }
}

impl Entropy for LogNormal {
    fn entropy(&self) -> f64 {
        (self.mu + 0.5) + self.sigma.ln() + HALF_LN_2PI
    }
}

impl Skewness for LogNormal {
    fn skewness(&self) -> Option<f64> {
        let e_sigma_2 = (self.sigma * self.sigma).exp();
        Some((e_sigma_2 + 2.0) * (e_sigma_2 - 1.0).sqrt())
    }
}

impl Kurtosis for LogNormal {
    fn kurtosis(&self) -> Option<f64> {
        let s2 = self.sigma * self.sigma;
        Some(
            (4.0 * s2).exp() + 2.0 * (3.0 * s2).exp() + 3.0 * (2.0 * s2).exp()
                - 6.0,
        )
    }
}

impl_traits!(f32);
impl_traits!(f64);

impl std::error::Error for LogNormalError {}

impl fmt::Display for LogNormalError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::MuNotFinite { mu } => write!(f, "non-finite mu: {}", mu),
            Self::SigmaTooLow { sigma } => {
                write!(f, "sigma ({}) must be greater than zero", sigma)
            }
            Self::SigmaNotFinite { sigma } => {
                write!(f, "non-finite sigma: {}", sigma)
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_basic_impls;
    use std::f64;

    const TOL: f64 = 1E-12;

    test_basic_impls!([continuous] LogNormal::default());

    #[test]
    fn new() {
        let lognorm = LogNormal::new(1.2, 3.0).unwrap();
        assert::close(lognorm.mu, 1.2, TOL);
        assert::close(lognorm.sigma, 3.0, TOL);
    }

    #[test]
    fn mean() {
        let mu = 3.0;
        let sigma = 2.0;
        let mean: f64 = LogNormal::new(mu, sigma).unwrap().mean().unwrap();
        assert::close(mean, 5.0_f64.exp(), TOL);
    }

    #[test]
    fn median_should_be_exp_mu() {
        let mu = 3.4;
        let median: f64 = LogNormal::new(mu, 0.5).unwrap().median().unwrap();
        assert::close(median, mu.exp(), TOL);
    }

    #[test]
    fn mode() {
        let mode: f64 = LogNormal::new(4.0, 2.0).unwrap().mode().unwrap();
        assert::close(mode, 0.0, TOL);
    }

    #[test]
    fn variance() {
        let lognorm_1 = LogNormal::new(3.4, 1.0).unwrap();
        let lognorm_2 = LogNormal::new(1.0, 3.0).unwrap();
        assert::close(
            lognorm_1.variance().unwrap(),
            (1.0_f64.exp() - 1.0) * 7.8_f64.exp(),
            TOL,
        );
        assert::close(
            lognorm_2.variance().unwrap(),
            (9.0_f64.exp() - 1.0) * 11.0_f64.exp(),
            TOL,
        );
    }

    #[test]
    fn draws_should_be_finite() {
        let mut rng = rand::thread_rng();
        let lognorm = LogNormal::standard();
        for _ in 0..100 {
            let x: f64 = lognorm.draw(&mut rng);
            assert!(x.is_finite())
        }
    }

    #[test]
    fn sample_length() {
        let mut rng = rand::thread_rng();
        let lognorm = LogNormal::standard();
        let xs: Vec<f64> = lognorm.sample(10, &mut rng);
        assert_eq!(xs.len(), 10);
    }

    #[test]
    fn standard_ln_pdf_at_one() {
        let lognorm = LogNormal::standard();
        assert::close(lognorm.ln_pdf(&1.0_f64), -0.918_938_533_204_672_7, TOL);
    }

    #[test]
    fn standard_ln_pdf_at_e() {
        let lognorm = LogNormal::standard();
        assert::close(
            lognorm.ln_pdf(&f64::consts::E),
            -2.4189385332046727,
            TOL,
        );
    }

    #[test]
    fn should_contain_positve_finite_values() {
        let lognorm = LogNormal::standard();
        assert!(lognorm.supports(&1E-8_f32));
        assert!(lognorm.supports(&10E8_f64));
    }

    #[test]
    fn should_not_contain_negative_or_zero() {
        let lognorm = LogNormal::standard();
        assert!(!lognorm.supports(&-1.0_f64));
        assert!(!lognorm.supports(&0.0_f64));
    }

    #[test]
    fn should_not_contain_nan() {
        let lognorm = LogNormal::standard();
        assert!(!lognorm.supports(&f64::NAN));
    }

    #[test]
    fn should_not_contain_positive_or_negative_infinity() {
        let lognorm = LogNormal::standard();
        assert!(!lognorm.supports(&f64::INFINITY));
        assert!(!lognorm.supports(&f64::NEG_INFINITY));
    }

    #[test]
    fn skewness() {
        let lognorm = LogNormal::new(-1.2, 3.4).unwrap();
        assert::close(lognorm.skewness().unwrap(), 33_936_928.306_623_81, TOL);
    }

    #[test]
    fn kurtosis() {
        let lognorm = LogNormal::new(-1.2, 1.0).unwrap();
        assert::close(lognorm.kurtosis().unwrap(), 110.93639217631153, TOL);
    }

    #[test]
    fn cdf_standard_at_one_should_be_one_half() {
        let lognorm1 = LogNormal::new(0.0, 1.0).unwrap();
        assert::close(lognorm1.cdf(&1.0_f64), 0.5, TOL);
    }

    #[test]
    fn cdf_standard_value_at_two() {
        let lognorm = LogNormal::standard();
        assert::close(lognorm.cdf(&2.0_f64), 0.755_891_404_214_417_3, TOL);
    }

    #[test]
    fn quantile_agree_with_cdf() {
        let mut rng = rand::thread_rng();
        let lognorm = LogNormal::standard();
        let xs: Vec<f64> = lognorm.sample(100, &mut rng);

        xs.iter().for_each(|x| {
            let p = lognorm.cdf(x);
            let y: f64 = lognorm.quantile(p);
            assert::close(y, *x, TOL);
        })
    }

    #[test]
    fn entropy() {
        let lognorm = LogNormal::new(1.2, 3.4).unwrap();
        assert::close(lognorm.entropy(), 3.8427139648267885, TOL);
    }

    #[test]
    fn entropy_standard() {
        let lognorm = LogNormal::standard();
        assert::close(lognorm.entropy(), 1.4189385332046727, TOL);
    }
}