1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
//! Gaussian/Normal distribution over x in (-∞, ∞)
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};

use once_cell::sync::OnceCell;
use rand::Rng;
use rand_distr::Normal;
use special::Error as _;
use std::f64::consts::SQRT_2;
use std::fmt;

use crate::consts::*;
use crate::data::GaussianSuffStat;
use crate::traits::*;
use crate::{clone_cache_f64, impl_display};

/// Gaussian / [Normal distribution](https://en.wikipedia.org/wiki/Normal_distribution),
/// N(μ, σ) over real values.
///
/// # Examples
///
/// Compute the [KL Divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence)
/// between two Gaussians.
///
/// ```
/// use rv::prelude::*;
///
/// let gauss_1 = Gaussian::new(0.1, 2.3).unwrap();
/// let gauss_2 = Gaussian::standard();
///
/// // KL is not symmetric
/// let kl_12 = gauss_1.kl(&gauss_2);
/// let kl_21 = gauss_2.kl(&gauss_1);
///
/// // ... but kl_sym is because it's the sum of KL(P|Q) and KL(Q|P)
/// let kl_sym = gauss_1.kl_sym(&gauss_2);
/// assert!((kl_sym - (kl_12 + kl_21)).abs() < 1E-12);
/// ```
#[derive(Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Gaussian {
    /// Mean
    mu: f64,
    /// Standard deviation
    sigma: f64,
    /// Cached log(sigma)
    #[cfg_attr(feature = "serde1", serde(skip))]
    ln_sigma: OnceCell<f64>,
}

impl Clone for Gaussian {
    fn clone(&self) -> Self {
        Self {
            mu: self.mu,
            sigma: self.sigma,
            ln_sigma: clone_cache_f64!(self, ln_sigma),
        }
    }
}

impl PartialEq for Gaussian {
    fn eq(&self, other: &Gaussian) -> bool {
        self.mu == other.mu && self.sigma == other.sigma
    }
}

#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum GaussianError {
    /// The mu parameter is infinite or NaN
    MuNotFinite { mu: f64 },
    /// The sigma parameter is less than or equal to zero
    SigmaTooLow { sigma: f64 },
    /// The sigma parameter is infinite or NaN
    SigmaNotFinite { sigma: f64 },
}

impl Gaussian {
    /// Create a new Gaussian distribution
    ///
    /// # Aruments
    /// - mu: mean
    /// - sigma: standard deviation
    pub fn new(mu: f64, sigma: f64) -> Result<Self, GaussianError> {
        if !mu.is_finite() {
            Err(GaussianError::MuNotFinite { mu })
        } else if sigma <= 0.0 {
            Err(GaussianError::SigmaTooLow { sigma })
        } else if !sigma.is_finite() {
            Err(GaussianError::SigmaNotFinite { sigma })
        } else {
            Ok(Gaussian {
                mu,
                sigma,
                ln_sigma: OnceCell::new(),
            })
        }
    }

    /// Creates a new Gaussian without checking whether the parameters are
    /// valid.
    #[inline]
    pub fn new_unchecked(mu: f64, sigma: f64) -> Self {
        Gaussian {
            mu,
            sigma,
            ln_sigma: OnceCell::new(),
        }
    }

    /// Standard normal
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::Gaussian;
    /// let gauss = Gaussian::standard();
    ///
    /// assert_eq!(gauss, Gaussian::new(0.0, 1.0).unwrap());
    /// ```
    #[inline]
    pub fn standard() -> Self {
        Gaussian {
            mu: 0.0,
            sigma: 1.0,
            ln_sigma: OnceCell::from(0.0),
        }
    }

    /// Get mu parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::Gaussian;
    /// let gauss = Gaussian::new(2.0, 1.5).unwrap();
    ///
    /// assert_eq!(gauss.mu(), 2.0);
    /// ```
    #[inline]
    pub fn mu(&self) -> f64 {
        self.mu
    }

    /// Set the value of mu
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::Gaussian;
    /// let mut gauss = Gaussian::new(2.0, 1.5).unwrap();
    /// assert_eq!(gauss.mu(), 2.0);
    ///
    /// gauss.set_mu(1.3).unwrap();
    /// assert_eq!(gauss.mu(), 1.3);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::Gaussian;
    /// # let mut gauss = Gaussian::new(2.0, 1.5).unwrap();
    /// assert!(gauss.set_mu(1.3).is_ok());
    /// assert!(gauss.set_mu(std::f64::NEG_INFINITY).is_err());
    /// assert!(gauss.set_mu(std::f64::INFINITY).is_err());
    /// assert!(gauss.set_mu(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_mu(&mut self, mu: f64) -> Result<(), GaussianError> {
        if !mu.is_finite() {
            Err(GaussianError::MuNotFinite { mu })
        } else {
            self.set_mu_unchecked(mu);
            Ok(())
        }
    }

    /// Set the value of mu without input validation
    #[inline]
    pub fn set_mu_unchecked(&mut self, mu: f64) {
        self.mu = mu;
    }

    /// Get sigma parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::Gaussian;
    /// let gauss = Gaussian::new(2.0, 1.5).unwrap();
    ///
    /// assert_eq!(gauss.sigma(), 1.5);
    /// ```
    #[inline]
    pub fn sigma(&self) -> f64 {
        self.sigma
    }

    /// Set the value of sigma
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::Gaussian;
    /// let mut gauss = Gaussian::standard();
    /// assert_eq!(gauss.sigma(), 1.0);
    ///
    /// gauss.set_sigma(2.3).unwrap();
    /// assert_eq!(gauss.sigma(), 2.3);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::Gaussian;
    /// # let mut gauss = Gaussian::standard();
    /// assert!(gauss.set_sigma(2.3).is_ok());
    /// assert!(gauss.set_sigma(0.0).is_err());
    /// assert!(gauss.set_sigma(-1.0).is_err());
    /// assert!(gauss.set_sigma(std::f64::INFINITY).is_err());
    /// assert!(gauss.set_sigma(std::f64::NEG_INFINITY).is_err());
    /// assert!(gauss.set_sigma(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_sigma(&mut self, sigma: f64) -> Result<(), GaussianError> {
        if sigma <= 0.0 {
            Err(GaussianError::SigmaTooLow { sigma })
        } else if !sigma.is_finite() {
            Err(GaussianError::SigmaNotFinite { sigma })
        } else {
            self.set_sigma_unchecked(sigma);
            Ok(())
        }
    }

    /// Set the value of sigma
    #[inline]
    pub fn set_sigma_unchecked(&mut self, sigma: f64) {
        self.sigma = sigma;
        self.ln_sigma = OnceCell::new();
    }

    /// Evaluate or fetch cached log sigma
    #[inline]
    fn ln_sigma(&self) -> f64 {
        *self.ln_sigma.get_or_init(|| self.sigma.ln())
    }
}

impl Default for Gaussian {
    fn default() -> Self {
        Gaussian::standard()
    }
}

impl From<&Gaussian> for String {
    fn from(gauss: &Gaussian) -> String {
        format!("N(μ: {}, σ: {})", gauss.mu, gauss.sigma)
    }
}

impl_display!(Gaussian);

macro_rules! impl_traits {
    ($kind:ty) => {
        impl Rv<$kind> for Gaussian {
            fn ln_f(&self, x: &$kind) -> f64 {
                let k = (f64::from(*x) - self.mu) / self.sigma;
                -self.ln_sigma() - 0.5 * k * k - HALF_LN_2PI
            }

            fn draw<R: Rng>(&self, rng: &mut R) -> $kind {
                let g = Normal::new(self.mu, self.sigma).unwrap();
                rng.sample(g) as $kind
            }

            fn sample<R: Rng>(&self, n: usize, rng: &mut R) -> Vec<$kind> {
                let g = Normal::new(self.mu, self.sigma).unwrap();
                (0..n).map(|_| rng.sample(g) as $kind).collect()
            }
        }

        impl ContinuousDistr<$kind> for Gaussian {}

        impl Support<$kind> for Gaussian {
            fn supports(&self, x: &$kind) -> bool {
                x.is_finite()
            }
        }

        impl Cdf<$kind> for Gaussian {
            fn cdf(&self, x: &$kind) -> f64 {
                let errf =
                    ((f64::from(*x) - self.mu) / (self.sigma * SQRT_2)).error();
                0.5 * (1.0 + errf)
            }
        }

        impl InverseCdf<$kind> for Gaussian {
            fn invcdf(&self, p: f64) -> $kind {
                if (p <= 0.0) || (1.0 <= p) {
                    panic!("P out of range");
                }
                let x =
                    self.mu + self.sigma * SQRT_2 * (2.0 * p - 1.0).inv_error();
                x as $kind
            }
        }

        impl Mean<$kind> for Gaussian {
            fn mean(&self) -> Option<$kind> {
                Some(self.mu as $kind)
            }
        }

        impl Median<$kind> for Gaussian {
            fn median(&self) -> Option<$kind> {
                Some(self.mu as $kind)
            }
        }

        impl Mode<$kind> for Gaussian {
            fn mode(&self) -> Option<$kind> {
                Some(self.mu as $kind)
            }
        }

        impl HasSuffStat<$kind> for Gaussian {
            type Stat = GaussianSuffStat;
            fn empty_suffstat(&self) -> Self::Stat {
                GaussianSuffStat::new()
            }
        }
    };
}

impl Variance<f64> for Gaussian {
    fn variance(&self) -> Option<f64> {
        Some(self.sigma * self.sigma)
    }
}

impl Entropy for Gaussian {
    fn entropy(&self) -> f64 {
        HALF_LN_2PI_E + self.ln_sigma()
    }
}

impl Skewness for Gaussian {
    fn skewness(&self) -> Option<f64> {
        Some(0.0)
    }
}

impl Kurtosis for Gaussian {
    fn kurtosis(&self) -> Option<f64> {
        Some(0.0)
    }
}

impl KlDivergence for Gaussian {
    #[allow(clippy::clippy::suspicious_operation_groupings)]
    fn kl(&self, other: &Self) -> f64 {
        let m1 = self.mu;
        let m2 = other.mu;

        let s1 = self.sigma;
        let s2 = other.sigma;

        let term1 = s2.ln() - s1.ln();
        let term2 = (s1 * s1 + (m1 - m2) * (m1 - m2)) / (2.0 * s2 * s2);

        term1 + term2 - 0.5
    }
}

impl QuadBounds for Gaussian {
    fn quad_bounds(&self) -> (f64, f64) {
        self.interval(0.99999999999)
    }
}

impl_traits!(f32);
impl_traits!(f64);

impl std::error::Error for GaussianError {}

impl fmt::Display for GaussianError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::MuNotFinite { mu } => write!(f, "non-finite mu: {}", mu),
            Self::SigmaTooLow { sigma } => {
                write!(f, "sigma ({}) must be greater than zero", sigma)
            }
            Self::SigmaNotFinite { sigma } => {
                write!(f, "non-finite sigma: {}", sigma)
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_basic_impls;
    use std::f64;

    const TOL: f64 = 1E-12;

    test_basic_impls!([continuous] Gaussian::standard());

    #[test]
    fn new() {
        let gauss = Gaussian::new(1.2, 3.0).unwrap();
        assert::close(gauss.mu, 1.2, TOL);
        assert::close(gauss.sigma, 3.0, TOL);
    }

    #[test]
    fn standard() {
        let gauss = Gaussian::standard();
        assert::close(gauss.mu, 0.0, TOL);
        assert::close(gauss.sigma, 1.0, TOL);
    }

    #[test]
    fn standard_gaussian_mean_should_be_zero() {
        let mean: f64 = Gaussian::standard().mean().unwrap();
        assert::close(mean, 0.0, TOL);
    }

    #[test]
    fn standard_gaussian_variance_should_be_one() {
        assert::close(Gaussian::standard().variance().unwrap(), 1.0, TOL);
    }

    #[test]
    fn mean_should_be_mu() {
        let mu = 3.4;
        let mean: f64 = Gaussian::new(mu, 0.5).unwrap().mean().unwrap();
        assert::close(mean, mu, TOL);
    }

    #[test]
    fn median_should_be_mu() {
        let mu = 3.4;
        let median: f64 = Gaussian::new(mu, 0.5).unwrap().median().unwrap();
        assert::close(median, mu, TOL);
    }

    #[test]
    fn mode_should_be_mu() {
        let mu = 3.4;
        let mode: f64 = Gaussian::new(mu, 0.5).unwrap().mode().unwrap();
        assert::close(mode, mu, TOL);
    }

    #[test]
    fn variance_should_be_sigma_squared() {
        let sigma = 0.5;
        let gauss = Gaussian::new(3.4, sigma).unwrap();
        assert::close(gauss.variance().unwrap(), sigma * sigma, TOL);
    }

    #[test]
    fn draws_should_be_finite() {
        let mut rng = rand::thread_rng();
        let gauss = Gaussian::standard();
        for _ in 0..100 {
            let x: f64 = gauss.draw(&mut rng);
            assert!(x.is_finite())
        }
    }

    #[test]
    fn sample_length() {
        let mut rng = rand::thread_rng();
        let gauss = Gaussian::standard();
        let xs: Vec<f64> = gauss.sample(10, &mut rng);
        assert_eq!(xs.len(), 10);
    }

    #[test]
    fn standard_ln_pdf_at_zero() {
        let gauss = Gaussian::standard();
        assert::close(gauss.ln_pdf(&0.0_f64), -0.918_938_533_204_672_7, TOL);
    }

    #[test]
    fn standard_ln_pdf_off_zero() {
        let gauss = Gaussian::standard();
        assert::close(gauss.ln_pdf(&2.1_f64), -3.1239385332046727, TOL);
    }

    #[test]
    fn nonstandard_ln_pdf_on_mean() {
        let gauss = Gaussian::new(-1.2, 0.33).unwrap();
        assert::close(gauss.ln_pdf(&-1.2_f64), 0.18972409131693846, TOL);
    }

    #[test]
    fn nonstandard_ln_pdf_off_mean() {
        let gauss = Gaussian::new(-1.2, 0.33).unwrap();
        assert::close(gauss.ln_pdf(&0.0_f32), -6.421_846_156_616_945, TOL);
    }

    #[test]
    fn should_contain_finite_values() {
        let gauss = Gaussian::standard();
        assert!(gauss.supports(&0.0_f32));
        assert!(gauss.supports(&10E8_f64));
        assert!(gauss.supports(&-10E8_f64));
    }

    #[test]
    fn should_not_contain_nan() {
        let gauss = Gaussian::standard();
        assert!(!gauss.supports(&f64::NAN));
    }

    #[test]
    fn should_not_contain_positive_or_negative_infinity() {
        let gauss = Gaussian::standard();
        assert!(!gauss.supports(&f64::INFINITY));
        assert!(!gauss.supports(&f64::NEG_INFINITY));
    }

    #[test]
    fn skewness_should_be_zero() {
        let gauss = Gaussian::new(-12.3, 45.6).unwrap();
        assert::close(gauss.skewness().unwrap(), 0.0, TOL);
    }

    #[test]
    fn kurtosis_should_be_zero() {
        let gauss = Gaussian::new(-12.3, 45.6).unwrap();
        assert::close(gauss.skewness().unwrap(), 0.0, TOL);
    }

    #[test]
    fn cdf_at_mean_should_be_one_half() {
        let mu1: f64 = 2.3;
        let gauss1 = Gaussian::new(mu1, 0.2).unwrap();
        assert::close(gauss1.cdf(&mu1), 0.5, TOL);

        let mu2: f32 = -8.0;
        let gauss2 = Gaussian::new(mu2.into(), 100.0).unwrap();
        assert::close(gauss2.cdf(&mu2), 0.5, TOL);
    }

    #[test]
    fn cdf_value_at_one() {
        let gauss = Gaussian::standard();
        assert::close(gauss.cdf(&1.0_f64), 0.841_344_746_068_542_9, TOL);
    }

    #[test]
    fn cdf_value_at_neg_two() {
        let gauss = Gaussian::standard();
        assert::close(gauss.cdf(&-2.0_f64), 0.022750131948179195, TOL);
    }

    #[test]
    fn quantile_at_one_half_should_be_mu() {
        let mu = 1.2315;
        let gauss = Gaussian::new(mu, 1.0).unwrap();
        let x: f64 = gauss.quantile(0.5);
        assert::close(x, mu, TOL);
    }

    #[test]
    fn quantile_agree_with_cdf() {
        let mut rng = rand::thread_rng();
        let gauss = Gaussian::standard();
        let xs: Vec<f64> = gauss.sample(100, &mut rng);

        xs.iter().for_each(|x| {
            let p = gauss.cdf(x);
            let y: f64 = gauss.quantile(p);
            assert::close(y, *x, TOL);
        })
    }

    #[test]
    fn quad_on_pdf_agrees_with_cdf_x() {
        use crate::misc::quad_eps;
        let ig = Gaussian::new(-2.3, 0.5).unwrap();
        let pdf = |x: f64| ig.f(&x);
        let mut rng = rand::thread_rng();
        for _ in 0..100 {
            let x: f64 = ig.draw(&mut rng);
            let res = quad_eps(pdf, -10.0, x, Some(1e-13));
            let cdf = ig.cdf(&x);
            assert::close(res, cdf, 1e-7);
        }
    }

    #[test]
    fn standard_gaussian_entropy() {
        let gauss = Gaussian::standard();
        assert::close(gauss.entropy(), 1.4189385332046727, TOL);
    }

    #[test]
    fn entropy() {
        let gauss = Gaussian::new(3.0, 12.3).unwrap();
        assert::close(gauss.entropy(), 3.9285377955830447, TOL);
    }

    #[test]
    fn kl_of_idential_dsitrbutions_should_be_zero() {
        let gauss = Gaussian::new(1.2, 3.4).unwrap();
        assert::close(gauss.kl(&gauss), 0.0, TOL);
    }

    #[test]
    fn kl() {
        let g1 = Gaussian::new(1.0, 2.0).unwrap();
        let g2 = Gaussian::new(2.0, 1.0).unwrap();
        let kl = 0.5_f64.ln() + 5.0 / 2.0 - 0.5;
        assert::close(g1.kl(&g2), kl, TOL);
    }

    #[test]
    fn ln_f_after_set_mu_works() {
        let mut gauss = Gaussian::standard();
        assert::close(gauss.ln_pdf(&0.0_f64), -0.918_938_533_204_672_7, TOL);

        gauss.set_mu(1.0).unwrap();
        assert::close(gauss.ln_pdf(&1.0_f64), -0.918_938_533_204_672_7, TOL);
    }

    #[test]
    fn ln_f_after_set_sigm_works() {
        let mut gauss = Gaussian::new(-1.2, 5.0).unwrap();

        gauss.set_sigma(0.33).unwrap();
        assert::close(gauss.ln_pdf(&-1.2_f64), 0.18972409131693846, TOL);
        assert::close(gauss.ln_pdf(&0.0_f32), -6.421_846_156_616_945, TOL);
    }
}