RuVector GNN WASM
WebAssembly bindings for RuVector Graph Neural Network operations.
Features
- GNN Layer Operations: Multi-head attention, GRU updates, layer normalization
- Tensor Compression: Adaptive compression based on access frequency
- Differentiable Search: Soft attention-based similarity search
- Hierarchical Forward: Multi-layer GNN processing
Installation
Usage
Initialize
import init, {
JsRuvectorLayer,
JsTensorCompress,
differentiableSearch,
SearchConfig
} from 'ruvector-gnn-wasm';
await init();
GNN Layer
// Create a GNN layer
const layer = new JsRuvectorLayer(
4, // input dimension
8, // hidden dimension
2, // number of attention heads
0.1 // dropout rate
);
// Forward pass
const nodeEmbedding = new Float32Array([1.0, 2.0, 3.0, 4.0]);
const neighbors = [
new Float32Array([0.5, 1.0, 1.5, 2.0]),
new Float32Array([2.0, 3.0, 4.0, 5.0])
];
const edgeWeights = new Float32Array([0.3, 0.7]);
const output = layer.forward(nodeEmbedding, neighbors, edgeWeights);
console.log('Output dimension:', layer.outputDim);
Tensor Compression
const compressor = new JsTensorCompress();
// Compress based on access frequency
const embedding = new Float32Array(128).fill(0.5);
const compressed = compressor.compress(embedding, 0.5); // 50% access frequency
// Decompress
const decompressed = compressor.decompress(compressed);
// Or specify compression level explicitly
const compressedPQ8 = compressor.compressWithLevel(embedding, "pq8");
// Get compression ratio
const ratio = compressor.getCompressionRatio(0.5); // Returns ~2.0 for half precision
Compression Levels
Access frequency determines compression:
f > 0.8: Full precision (no compression) - hot dataf > 0.4: Half precision (2x compression) - warm dataf > 0.1: 8-bit PQ (4x compression) - cool dataf > 0.01: 4-bit PQ (8x compression) - cold dataf <= 0.01: Binary (32x compression) - archive data
Differentiable Search
const query = new Float32Array([1.0, 0.0, 0.0]);
const candidates = [
new Float32Array([1.0, 0.0, 0.0]), // Perfect match
new Float32Array([0.9, 0.1, 0.0]), // Close match
new Float32Array([0.0, 1.0, 0.0]) // Orthogonal
];
const config = new SearchConfig(2, 1.0); // k=2, temperature=1.0
const result = differentiableSearch(query, candidates, config);
console.log('Top indices:', result.indices);
console.log('Weights:', result.weights);
API Reference
JsRuvectorLayer
class JsRuvectorLayer {
constructor(
inputDim: number,
hiddenDim: number,
heads: number,
dropout: number
);
forward(
nodeEmbedding: Float32Array,
neighborEmbeddings: Float32Array[],
edgeWeights: Float32Array
): Float32Array;
readonly outputDim: number;
}
JsTensorCompress
class JsTensorCompress {
constructor();
compress(embedding: Float32Array, accessFreq: number): object;
compressWithLevel(embedding: Float32Array, level: string): object;
decompress(compressed: object): Float32Array;
getCompressionRatio(accessFreq: number): number;
}
Compression levels: "none", "half", "pq8", "pq4", "binary"
differentiableSearch
function differentiableSearch(
query: Float32Array,
candidateEmbeddings: Float32Array[],
config: SearchConfig
): { indices: number[], weights: number[] };
SearchConfig
class SearchConfig {
constructor(k: number, temperature: number);
k: number; // Number of results
temperature: number; // Softmax temperature (lower = sharper)
}
cosineSimilarity
function cosineSimilarity(a: Float32Array, b: Float32Array): number;
Building from Source
# Install wasm-pack
|
# Build for Node.js
# Build for browser
# Build for bundler (webpack, etc.)
Performance
- GNN layers use efficient attention mechanisms
- Compression reduces memory usage by 2-32x
- All operations are optimized for WASM
- No garbage collection during forward passes
License
MIT